Scikit-Learn 基础教程

1. 安装 Scikit-Learn

首先,确保你的 Python 环境已安装好。然后,可以通过 pip 或 conda 安装 scikit-learn:

bash 复制代码
pip install -U scikit-learn

或者如果你使用的是 Anaconda 发行版,可以运行:

bash 复制代码
conda install scikit-learn
2. 导入库

一旦安装完成,就可以开始导入必要的库:

python 复制代码
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
3. 加载数据

Scikit-Learn 包含了一些内置数据集,例如鸢尾花数据集 (Iris dataset)。下面是如何加载并查看数据集的示例:

python 复制代码
# 加载数据
iris = load_iris()
X = iris.data
y = iris.target

# 查看数据的前几行
print("Features:", X[:5])
print("Labels:", y[:5])
4. 数据分割

为了评估模型性能,我们需要将数据分为训练集和测试集:

python 复制代码
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
5. 数据预处理

数据预处理是机器学习中的一个重要步骤。这可能包括缺失值处理、特征缩放等:

python 复制代码
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
6. 模型训练

选择一个模型并训练它。这里我们使用逻辑回归作为例子:

python 复制代码
model = LogisticRegression()
model.fit(X_train_scaled, y_train)
7. 模型评估

评估模型的性能:

python 复制代码
y_pred = model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
8. 模型调优

我们可以使用网格搜索或随机搜索来调整模型参数以优化性能:

python 复制代码
from sklearn.model_selection import GridSearchCV

param_grid = {'C': [0.1, 1, 10], 'penalty': ['l1', 'l2']}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid_search.fit(X_train_scaled, y_train)

best_params = grid_search.best_params_
print("Best Parameters:", best_params)
9. 应用模型

最后,使用最佳参数训练最终模型并在新数据上进行预测:

python 复制代码
final_model = LogisticRegression(**best_params)
final_model.fit(X_train_scaled, y_train)
new_data = [[5.1, 3.5, 1.4, 0.2]]  # 示例新数据点
prediction = final_model.predict(scaler.transform(new_data))
print("Prediction:", prediction)
相关推荐
u***32432 小时前
使用python进行PostgreSQL 数据库连接
数据库·python·postgresql
青瓷程序设计5 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
tobebetter95275 小时前
How to manage python versions on windows
开发语言·windows·python
F_D_Z5 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
daidaidaiyu6 小时前
一文入门 LangGraph 开发
python·ai
yLDeveloper6 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
不知更鸟7 小时前
前端报错:快速解决Django接口404问题
前端·python·django
4***72137 小时前
【玩转全栈】----Django模板语法、请求与响应
数据库·python·django
梁正雄7 小时前
1、python基础语法
开发语言·python
ituff8 小时前
微软认证考试又免费了
后端·python·flask