验证cuda和pytorch都按照成功了

要验证您的PyTorch是否能够调用CUDA,您可以执行以下步骤:

  1. **检查CUDA是否可用**:

在Python中运行以下代码来检查CUDA是否可用:

```python

import torch

print(torch.cuda.is_available())

```

如果输出为 `True`,则表示您的系统已安装了CUDA,并且PyTorch可以访问它。

  1. **列出可用的设备**:

运行以下代码来查看系统上可用的CUDA设备:

```python

print(torch.cuda.device_count())

print(torch.cuda.get_device_name(0)) # 这将打印出第一个设备的名称

```

这将告诉您有多少个GPU可用,以及它们的名称。

  1. **创建一个CUDA张量**:

尝试将一个张量移动到GPU上,以验证PyTorch能够使用CUDA:

```python

x = torch.tensor([1.0, 2.0, 3.0], device='cuda:0')

print(x)

```

如果没有错误,并且能够打印出张量,那么PyTorch可以成功地使用CUDA。

  1. **执行一个简单的计算**:

您还可以执行一个简单的计算来进一步验证:

```python

y = x + 1

print(y)

```

如果这一步也能成功执行,那么您的PyTorch安装已正确配置,可以调用CUDA。

确保在执行这些步骤之前,您的PyTorch版本是CUDA兼容的,并且您的GPU驱动程序与安装的CUDA版本相匹配。如果您的系统满足所有这些条件,PyTorch应该能够无缝地调用CUDA。

相关推荐
一个处女座的程序猿2 小时前
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
人工智能·自然语言处理·小语言模型·slms
自由随风飘2 小时前
python 题目练习1~5
开发语言·python
fl1768314 小时前
基于python的天气预报系统设计和可视化数据分析源码+报告
开发语言·python·数据分析
档案宝档案管理4 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
闲人编程5 小时前
Python与区块链:如何用Web3.py与以太坊交互
python·安全·区块链·web3.py·以太坊·codecapsule
Want5955 小时前
Python汤姆猫
开发语言·python
IT_Beijing_BIT6 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8246 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
花姐夫Jun6 小时前
基于Vue+Python+Orange Pi Zero3的完整视频监控方案
vue.js·python·音视频
张较瘦_6 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能