验证cuda和pytorch都按照成功了

要验证您的PyTorch是否能够调用CUDA,您可以执行以下步骤:

  1. **检查CUDA是否可用**:

在Python中运行以下代码来检查CUDA是否可用:

```python

import torch

print(torch.cuda.is_available())

```

如果输出为 `True`,则表示您的系统已安装了CUDA,并且PyTorch可以访问它。

  1. **列出可用的设备**:

运行以下代码来查看系统上可用的CUDA设备:

```python

print(torch.cuda.device_count())

print(torch.cuda.get_device_name(0)) # 这将打印出第一个设备的名称

```

这将告诉您有多少个GPU可用,以及它们的名称。

  1. **创建一个CUDA张量**:

尝试将一个张量移动到GPU上,以验证PyTorch能够使用CUDA:

```python

x = torch.tensor([1.0, 2.0, 3.0], device='cuda:0')

print(x)

```

如果没有错误,并且能够打印出张量,那么PyTorch可以成功地使用CUDA。

  1. **执行一个简单的计算**:

您还可以执行一个简单的计算来进一步验证:

```python

y = x + 1

print(y)

```

如果这一步也能成功执行,那么您的PyTorch安装已正确配置,可以调用CUDA。

确保在执行这些步骤之前,您的PyTorch版本是CUDA兼容的,并且您的GPU驱动程序与安装的CUDA版本相匹配。如果您的系统满足所有这些条件,PyTorch应该能够无缝地调用CUDA。

相关推荐
臭东西的学习笔记3 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
Rabbit_QL3 小时前
【水印添加工具】从零设计一个工程级 Python 图片水印工具:WaterMask 架构与实现
开发语言·python
大王小生4 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605224 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8884 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新4 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录4 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划4 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5205 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
曲幽5 小时前
FastAPI多进程部署:定时任务重复执行?手把手教你用锁搞定
redis·python·fastapi·web·lock·works