验证cuda和pytorch都按照成功了

要验证您的PyTorch是否能够调用CUDA,您可以执行以下步骤:

  1. **检查CUDA是否可用**:

在Python中运行以下代码来检查CUDA是否可用:

```python

import torch

print(torch.cuda.is_available())

```

如果输出为 `True`,则表示您的系统已安装了CUDA,并且PyTorch可以访问它。

  1. **列出可用的设备**:

运行以下代码来查看系统上可用的CUDA设备:

```python

print(torch.cuda.device_count())

print(torch.cuda.get_device_name(0)) # 这将打印出第一个设备的名称

```

这将告诉您有多少个GPU可用,以及它们的名称。

  1. **创建一个CUDA张量**:

尝试将一个张量移动到GPU上,以验证PyTorch能够使用CUDA:

```python

x = torch.tensor([1.0, 2.0, 3.0], device='cuda:0')

print(x)

```

如果没有错误,并且能够打印出张量,那么PyTorch可以成功地使用CUDA。

  1. **执行一个简单的计算**:

您还可以执行一个简单的计算来进一步验证:

```python

y = x + 1

print(y)

```

如果这一步也能成功执行,那么您的PyTorch安装已正确配置,可以调用CUDA。

确保在执行这些步骤之前,您的PyTorch版本是CUDA兼容的,并且您的GPU驱动程序与安装的CUDA版本相匹配。如果您的系统满足所有这些条件,PyTorch应该能够无缝地调用CUDA。

相关推荐
道19938 小时前
PyTorch 高级进阶教程之深度实战实例(四)
人工智能·pytorch·python
hbqjzx8 小时前
[工具] B站油管DY视频下载器 2025.12.18
python
wayuncn8 小时前
我国首个虚拟数字人国标发布
人工智能·虚拟数字人·ai数字人·ai智能客服·ai智能体开发定制·ai群聊·ai定制
攻城狮7号8 小时前
OpenAI开源0.4B参数Circuit-Sparsity模型:给AI大脑做次“极简手术”
人工智能·openai·开源模型·circuit·sparsity·0.4b参数模型
自己的九又四分之三站台8 小时前
基于Python获取SonarQube的检查报告信息
开发语言·python
CES_Asia8 小时前
政策x技术x市场:三位一体推动机器人产业爆发
大数据·人工智能·科技·机器人
彼岸花开了吗8 小时前
构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
人工智能·python
小苑同学8 小时前
Masked Language Models是什么?
人工智能·语言模型·自然语言处理
ASS-ASH9 小时前
机器人灵巧手:技术演进、市场格局与未来前景
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·灵巧手
Deepoch9 小时前
“即插即用”的智能升级:具身智能模块如何破解机器人产业化难题
人工智能·科技·机器人·开发板·未来·具身模型·deepoc