吴恩达机器学习WEEK2

COURSE1 WEEK2

多维特征

在线性回归中,往往特征不止一个,而是具有多维特征

例如,在预测房价的例子中,我们知道更多的信息:

x 1 x_1 x1:房屋的面积

x 2 x_2 x2:卧室的数目

x 3 x_3 x3:楼层数目

x 4 x_4 x4:房屋的年限

因此,我们每一个特征 x ( i ) x^{(i)} x(i) 的表示变成了向量形式, x j ( i ) x^{(i)}_j xj(i) 表示具体的某的 特征( i 行 j 列)

从而,我们的线性模型公式转化为:
f w , b ( x ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + w 4 x 4 + b f_{w,b}(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b fw,b(x)=w1x1+w2x2+w3x3+w4x4+b

其中, w i w_i wi可以理解为第 i i i 个特征对目标的贡献程度

进而,推广到更一般的形式:
f w , b ( x ) = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b f_{w,b}(x) = w_1x_1 + w_2x_2 + \dots + w_nx_n + b fw,b(x)=w1x1+w2x2+⋯+wnxn+b

将所有的参数 w i w_i wi组合在一起,形成向量 w ⃗ = [ w 1 , w 2 , ... , w n ] \vec {w} = [w_1, w_2, \dots, w_n] w =[w1,w2,...,wn],将所有的特征 x i x_i xi 组合在一起,形成一个向量 x ⃗ = [ x 1 , x 2 , ... , x n ] \vec{x} = [\boldsymbol x_1, \boldsymbol x_2, \dots, \boldsymbol x_n] x =[x1,x2,...,xn]

从而,将模型形式可以写为:
f w ⃗ , b ( x ⃗ ) = w ⃗ ⋅ x ⃗ + b f_{\vec w, b}(\vec x) = \vec w \cdot \vec x + b fw ,b(x )=w ⋅x +b

其中, ⋅ \cdot ⋅ 代表点乘

这种具有多个特征的线性回归模型叫做多元线性回归

向量化

在多元线性回归中,使用向量化的方法,可以使得代码的编写更加简洁,实现更加快速

如果不使用向量化,在代码的编写中,我们需要计算以下结果:
f w ⃗ , b ( x ⃗ ) = ∑ j = 1 n w j x j + b f_{\vec w, b}(\vec x) = \sum _{j=1}^{n}w_jx_j + b fw ,b(x )=j=1∑nwjxj+b

当 n n n 较大时,需要较大的计算量,实现较为复杂

python 复制代码
f = 0
for j in range(n):
    f = f + w[j] * x[j]
f = f + b

所谓向量化 ,就是把数据都看作向量,在每一步的计算中使用向量的计算。例如多元线性回归模型,将 w w w 和 特征 x x x 进行点乘计算

python 复制代码
f = np.dot(w, x) + b

向量化的好处:

  • 使得代码更加简洁
  • 运算速度更快

多元线性回归的梯度下降

与单变量线性回归的梯度下降相似,唯一不同的是,此时要把参数 w w w 当作是一个向量 w ⃗ \vec w w ,因此得到参数更新的公式:
w j = w j − α ∂ ∂ w j J ( w ⃗ , b ) b = b − α ∂ ∂ b J ( w ⃗ , b ) w_j = w_j - \alpha \frac{\partial}{\partial w_j}J(\vec w, b) \\ b = b - \alpha \frac{\partial}{\partial b}J(\vec w, b) wj=wj−α∂wj∂J(w ,b)b=b−α∂b∂J(w ,b)

正规方程

正规方程即最小二乘法

由于我们要求解损失函数最小的时候对应的参数值,所以不妨将损失函数看作是参数的函数 ,然后对损失函数求一阶导函数,令一阶导函数等于 0,求解其极小值点,就对应着最优的参数

特点:

  • 仅适用于线性回归
  • 解决最小化参数问题(同梯度下降算法),但是不需要迭代
  • 当特征较多时( > 10000),运行速度较慢

只要特征变量的数目并不大,标准方程是一个很好的计算参数的替代方法。具体地说,只要特征变量数量小于一万,通常使用标准方程法,而不使用梯度下降法。

特征缩放

使用特征缩放的方法,能够使得梯度下降算法的运行速度得到提升

所谓特征缩放,就是在进行模型训练之前,对数据进行归一化操作

例如,以房价预测为例,特征又房屋面积 x 1 x_1 x1 和卧室数量 x 2 x_2 x2,因此:
p r i c e ^ = w 1 x 1 + x 2 x 2 + b \hat {price} = w_1x_1 + x_2x_2 + b price^=w1x1+x2x2+b

其中, x 1 ∈ [ 300 , 2000 ] , x 2 ∈ [ 0 , 5 ] x_1 \in [300,2000],x_2 \in [0, 5] x1∈[300,2000],x2∈[0,5]

数据集:

$x_1 = 2000, x_2 = 5, price = 500K

由此可以看出,我们的参数 w 1 w_1 w1应该较小, w 2 w_2 w2 应该较大

即,对于一个好的模型来说:

  • 当特征的可能指较小时,其参数的合理值将相对较大
  • 当特征的可能指较大时,其参数的合理值将相对较小

当每个特征的取值范围相差较大时,特征关系与损失函数图像如下:

如右侧的损失函数梯度图,当我们使用梯度下降算法时,如果学习率设置不当,算法会来回左右横跳动,经过很长一段时间才会收敛到最优值

当我们使用特征缩放时,即将 x 1 x_1 x1和 x 2 x_2 x2进行重新标度,归一化到区间 [ 0 , 1 ] [0,1] [0,1]内,保证了两个特征拥有一个可比较的范围,从而使得损失函数梯度图更像一个圆形,便于算法能够快速收敛到最优点

特征缩放方法

特征缩放的目的是将一列数据变化到某个固定区间(范围)中

均值归一化

将数据归一化到区间 [ − 1 , 1 ] [-1,1] [−1,1]内
x = x − μ x m a x − x m i n x = \frac{x - \mu}{x_{max} - x_{min}} x=xmax−xminx−μ

其中, μ \mu μ 是数据 x x x 的均值

Z-score 归一化

即,将数据转化为均值为0,标准差为1的分布
x = x − μ σ x = \frac{x - \mu}{\sigma } x=σx−μ

其中, μ \mu μ 是数据的均值, σ \sigma σ 是标准差

特征缩放的好坏,具体取决于所有特征进行特征缩放后的取值范围是否尽量一致,以保证梯度下降算法的有效进行

梯度下降法则

如何判断梯度下降是否收敛

一般而言,在模型训练阶段,随着迭代次数的进行,损失值如下图所示:

可以看到的是,当迭代次数大于300时,曲线接近平行,下降的趋势非常平缓,此时意味着我们的梯度下降开始收敛了

通常,可以使用 epsilon法进行自动收敛测试,即设置收敛阈值 ε = 0.001 \varepsilon = 0.001 ε=0.001,当损失值下降幅度小于阈值时,即认为算法开始收敛,但从实际来看,要想确定一个正确的阈值是非常困难的

如何设置学习率

如果学习率设置过大,则最终结果不容易收敛

如果学习率设置太小,则会导致算法运行较长时间

通过绘制损失函数与迭代次数关系的图像,如果损失函数出现时而下降,时而上升,即不是一直下降的趋势,那么则表明学习率的设置可能较大(也可能是代码存在错误

因此,在实际工作中,一般会选择一系列的值不断去尝试,且在尝试的过程中,只对模型的部分数据进行有限的迭代次数,通过对比来选择最优的学习率

多项式回归

特征工程

在实际问题中,使用的模型往往比较复杂,因此有时需要利用特征工程的方法来对模型加入一些重要的特征

例如,在预测房价时,目前存在临街长度 x 1 x_1 x1 和深度 x 2 x_2 x2,因此房价预测模型为:
f w ⃗ , b ( x ⃗ ) = w 1 x 1 + w 2 x 2 + b f_{\vec w, b}(\vec x) = w_1x_1 + w_2x_2 + b fw ,b(x )=w1x1+w2x2+b

但是在实际中,根据生活经验,使用房屋面积作为单特征可能会更好的帮助我们进行预测,因此引入第三个变量房屋面积 x 3 x_3 x3,且 x 3 = x 1 x 2 x_3 = x_1x_2 x3=x1x2,从而我们的模型转化为:
f w ⃗ , b ( x ⃗ ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + b f_{\vec w, b}(\vec x) = w_1x_1 + w_2x_2 +w_3x_3 + b fw ,b(x )=w1x1+w2x2+w3x3+b

这种方法叫做创建新特征

多元线性回归+特征工程

将多元线性回归与特征工程的思想结合起来,就是多项式回归的算法,这可以使我们获得更好的数据模型

对于通过面积来预测房价的例子,根据数据集的分布情况,可以看出如果使用二次函数来拟合,效果可能会更好,如下图:

但是考虑到二次函数在达到最高点之后会再次下降,而实际情况中房屋面积越大,价格应该是越高,因此对模型进行调整,改为三次函数模型

同时,在加入高次幂时,要记得对使用特征缩放得方法,保证我们的梯度下降算法有效的进行

除此之外,由于观察到随着面积的增长,价格增长的趋势不在那么陡峭,因此也可以考虑使用平方根函数

相关推荐
佚明zj10 分钟前
全卷积和全连接
人工智能·深度学习
qzhqbb3 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法