Yolov8添加ConvNetV1和V2模块

Yolov8添加ConvNet模块

1 ConvNet系列相关内容

(1)2022 论文地址:A ConvNet for the 2020s
Code Link

如下图所示,精度、效率、尺寸都很不错。

论文的摘要如下:

视觉识别的"咆哮的 20 年代"始于视觉注意力 (ViT) 的引入,它迅速取代了 ConvNets 成为最先进的图像分类模型。另一方面,vanilla ViT 在应用于一般计算机视觉任务(如对象检测和语义分割)时面临困难。正是分层 Transformer(例如 Swin Transformers)重新引入了几个 ConvNet 先验,使 Transformer 实际上可以作为通用视觉骨干,并在各种视觉任务中表现出卓越的性能。然而,这种混合方法的有效性仍然在很大程度上归功于 Transformer 的固有优势,而不是卷积固有的归纳偏置。在这项工作中,我们重新审视了设计空间,并测试了纯ConvNet可以达到的极限。我们逐步将标准 ResNet "现代化"现代化,以设计视觉转换器,并发现导致性能差异的几个关键组件。这次探索的结果是一系列被称为 ConvNeXt 的纯 ConvNet 模型。ConvNeXts 完全由标准 ConvNet 模块构建,在精度和可扩展性方面与 Transformer 竞争,实现了 87.8% 的 ImageNet top-1 准确率,在 COCO 检测和 ADE20K 分割方面优于 Swin Transformers,同时保持了标准 ConvNet 的简单性和效率。

(2)2023论文地址:ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
Code link

如下图所示,2023年改进的ConvNeXt比之前的更好了:

论文的摘要如下:

在改进的架构和更好的表示学习框架的推动下,视觉识别领域在 2020 年代初期实现了快速的现代化和性能提升。例如,以ConvNeXt [52]为代表的现代ConvNets在各种场景中都表现出了强大的性能。虽然这些模型最初是为使用ImageNet标签的监督学习而设计的,但它们也可能从自监督学习技术中受益,如蒙版自动编码器(MAE)[31]。然而,我们发现,简单地将这两种方法结合起来会导致性能不佳。在本文中,我们提出了一种全卷积掩码自编码器框架和一种新的全局响应归一化(GRN)层,可以将其添加到ConvNeXt架构中以增强通道间的特征竞争。这种自监督学习技术和架构改进的协同设计产生了一个名为 ConvNeXt V2 的新模型系列,该模型系列显着提高了纯 ConvNet 在各种识别基准上的性能,包括 ImageNet 分类、COCO 检测和 ADE20K 分割。我们还提供各种尺寸的预训练 ConvNeXt V2 模型,模型的范围有在 ImageNet 上准确率为 76.7% 的高效 3.7M 参数 Atto 模型,到仅使用公共训练数据即可达到 88.9% 准确率的 650M Huge 模型。

2 添加ConvNeXt的代码到ultralytics/nn/modules/conv.py文件末尾

网络模型代码参考地址:https://blog.csdn.net/Orange_sparkle/article/details/126827461?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522172267585216800182132305%2522%252C%2522scm%2522%253A%252220140713.130102334...%2522%257D&request_id=172267585216800182132305&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-126827461-null-null.142^v100^pc_search_result_base5&utm_term=convnext%E6%A8%A1%E5%9E%8B%E4%BB%A3%E7%A0%81&spm=1018.2226.3001.4187

python 复制代码
"""
original code from facebook research:
https://github.com/facebookresearch/ConvNeXt
"""
 
import torch
import torch.nn as nn
import torch.nn.functional as F
 
 
def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output
 
 
class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
 
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
 
    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
 
 
class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """
    # channels_first (batch_size, channels, height, width)  pytorch官方默认使用
    # channels_last  (batch_size, height, width, channels)
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape), requires_grad=True)  # weight bias对应γ β
        self.bias = nn.Parameter(torch.zeros(normalized_shape), requires_grad=True)
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise ValueError(f"not support data format '{self.data_format}'")
        self.normalized_shape = (normalized_shape,)
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            # [batch_size, channels, height, width]
            # 对channels 维度求均值
            mean = x.mean(1, keepdim=True)
            # 方差
            var = (x - mean).pow(2).mean(1, keepdim=True)
            # 减均值,除以标准差的操作
            x = (x - mean) / torch.sqrt(var + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x
 
 
# ConvNeXt Block
class ConvNeXt_Block(nn.Module):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch
    Args:
        dim (int): Number of input channels.
        drop_rate (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """
 
    def __init__(self, dim, drop_rate=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_last")
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        # gamma 针对layer scale的操作
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim,)),
                                  requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_rate) if drop_rate > 0. else nn.Identity()  # nn.Identity() 恒等映射
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # [N, C, H, W] -> [N, H, W, C]
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # [N, H, W, C] -> [N, C, H, W]
 
        x = shortcut + self.drop_path(x)
        return x
 
 
class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """
 
    def __init__(self, in_chans: int = 3, num_classes: int = 1000, depths: list = None,
                 dims: list = None, drop_path_rate: float = 0., layer_scale_init_value: float = 1e-6,
                 head_init_scale: float = 1.):
        super().__init__()
        # 最初下采样部分
        self.downsample_layers = nn.ModuleList()  # stem and 3 intermediate downsampling conv layers
        # Conv2d k4, s4
        # LayerNorm
        stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
                             LayerNorm(dims[0], eps=1e-6, data_format="channels_first"))
        self.downsample_layers.append(stem)
 
        # 对应stage2-stage4前的3个downsample
        for i in range(3):
            downsample_layer = nn.Sequential(LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                                             nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2))
            self.downsample_layers.append(downsample_layer)
 
        self.stages = nn.ModuleList()  # 4 feature resolution stages, each consisting of multiple blocks
        # 等差数列,初始值0,到drop path rate,总共depths个数
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
 
        # 构建每个stage中堆叠的block
        for i in range(4):
            stage = nn.Sequential(
                *[ConvNeXt_Block(dim=dims[i], drop_rate=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value)
                  for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]
 
        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)
        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)
 
    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.2)
            nn.init.constant_(m.bias, 0)
 
    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
 
        return self.norm(x.mean([-2, -1]))  # global average pooling, (N, C, H, W) -> (N, C)
 
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.forward_features(x)
        x = self.head(x)
        return x
 
 
def convnext_tiny(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth
    model = ConvNeXt(depths=[3, 3, 9, 3],
                     dims=[96, 192, 384, 768],
                     num_classes=num_classes)
    return model
 
 
def convnext_small(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[96, 192, 384, 768],
                     num_classes=num_classes)
    return model
 
 
def convnext_base(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth
    # https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[128, 256, 512, 1024],
                     num_classes=num_classes)
    return model
 
 
def convnext_large(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth
    # https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[192, 384, 768, 1536],
                     num_classes=num_classes)
    return model
 
 
def convnext_xlarge(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[256, 512, 1024, 2048],
                     num_classes=num_classes)
    return model


class CNeB(nn.Module):
    # CSP ConvNextBlock with 3 convolutons by is cyy/yoloair
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CNeB, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(ConvNeXt_Block(c_) for _ in range(n)))  #ConvNeXt_Block与bilibili讲解的ConvNextblock的一致
 
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

在ultralytics/nn/modules/conv.py中的__all__中加入'CNeB'模块名称:

然后在ultralytics/nn/modules/init .py中添加模块名CNeB,并在下面的__all__中也添加CNeB,这样CNeB就封装成了ultralytics.nn.modules库函数:

3 在ultralytics/nn/tasks.py的parse_model函数中解析模型yaml文件,判断是否有CNeB模块,在pare_model函数中添加的代码如下:

python 复制代码
        elif m is CNeB:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)  
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]
            if m is CNeB:
                args.insert(2, n)
                n = 1


4 修改一个yolov8-seg.yaml文件

复制ultralytics/cfg/models/v8/yolov8-seg.yaml文件,在位置ultralytics/cfg/models/v8/中新建yolov8-CNeBseg.yaml文件,在backbone和head部分都添加CNeB模块。

python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 768]
  l: [1.00, 1.00, 512]
  x: [1.00, 1.25, 512]

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]] #2
  - [-1, 3, CNeB, [128]       #-->3
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8-->4
  - [-1, 6, C2f, [256, True]] #4-->5
  - [-1, 6, CNeB, [256]       #-->6
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16-->7
  - [-1, 6, C2f, [512, True]] #6-->8
  - [-1, 6, CNeB, [512]       #-->9
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32-->10
  - [-1, 3, C2f, [1024, True]]  #8-->11
  - [-1, 3, CNeB, [1024]       #-->12
  - [-1, 1, SPPF, [1024, 5]] # 9-->13

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]  #10-->14
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4-->15
  - [-1, 3, C2f, [512]] # 12-->16
  - [-1, 3, CNeB, [512]       #-->17

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]  #13-->18
  - [[-1, 6], 1, Concat, [1]] # cat backbone P3-->19
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)-->20
  - [-1, 3, CNeB, [256]       #-->21

  - [-1, 1, Conv, [256, 3, 2]]  #16-->22
  - [[-1, 17], 1, Concat, [1]] # cat head P4-->23
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)-->24
  - [-1, 3, CNeB, [512]       #-->25

  - [-1, 1, Conv, [512, 3, 2]]  #19-->26
  - [[-1, 13], 1, Concat, [1]] # cat head P5-->27
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)-->28
  - [-1, 3, CNeB, [1024]       #-->29

#  - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  - [[21, 25, 29], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

注意在需要引用前面的序号部分要重新更新,"-->"符号指向新的序号
,backbone部分没有引用前面的序号,head部分有,就要相应的修改。

5 测试和训练

复制一份tests/test_python.py文件中的测试代码,新建文件命名为test_yolov8_CNeB_model.py,只保留下方代码:

python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import urllib
from copy import copy
from pathlib import Path

import cv2
import numpy as np
import pytest
import torch
import yaml
from PIL import Image

from tests import CFG, IS_TMP_WRITEABLE, MODEL, SOURCE, TMP
from ultralytics import RTDETR, YOLO
from ultralytics.cfg import MODELS, TASK2DATA, TASKS
from ultralytics.data.build import load_inference_source
from ultralytics.utils import (
    ASSETS,
    DEFAULT_CFG,
    DEFAULT_CFG_PATH,
    LOGGER,
    ONLINE,
    ROOT,
    WEIGHTS_DIR,
    WINDOWS,
    checks,
)
from ultralytics.utils.downloads import download
from ultralytics.utils.torch_utils import TORCH_1_9

CFG = 'ultralytics/cfg/models/v8/yolov8l-CNeBseg.yaml'	#使用l模型加一个l字母
SOURCE = ASSETS / "bus.jpg"
def test_model_forward():
    """Test the forward pass of the YOLO model."""
    model = YOLO(CFG)
    model(source=SOURCE, imgsz=[512,512], augment=True)  # also test no source and augment

先在ultralytics/nn/tasks.py的parse_model函数中增加一行代码用于查看模型结构:

python 复制代码
print(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}")

运行test_yolov8_CNeB_model.py的结果如下:

python 复制代码
============================= test session starts ==============================
collected 1 item                                                               

test_yolov8_CBAM_model.py::test_model_forward PASSED                     [100%]  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]           
  3                  -1  3    142720  ultralytics.nn.modules.conv.CNeB             [128, 128, 3]                 
  4                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              
  5                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]           
  6                  -1  6    963072  ultralytics.nn.modules.conv.CNeB             [256, 256, 6]                 
  7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              
  8                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]           
  9                  -1  6   3761152  ultralytics.nn.modules.conv.CNeB             [512, 512, 6]                 
 10                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 11                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]           
 12                  -1  3   2143744  ultralytics.nn.modules.conv.CNeB             [512, 512, 3]                 
 13                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]                
 17                  -1  3   2143744  ultralytics.nn.modules.conv.CNeB             [512, 512, 3]                 
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 20                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]                 
 21                  -1  3    547584  ultralytics.nn.modules.conv.CNeB             [256, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]                 
 25                  -1  3   2143744  ultralytics.nn.modules.conv.CNeB             [512, 512, 3]                 
 26                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 27            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 28                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]                
 29                  -1  3   2143744  ultralytics.nn.modules.conv.CNeB             [512, 512, 3]                 
 30        [21, 25, 29]  1   7950688  ultralytics.nn.modules.head.Segment          [80, 32, 256, [256, 512, 512]]

image 1/1 /XXXXXXXX/ultralyticsv8_2-main/ultralytics/assets/bus.jpg: 640x480 (no detections), 135.6ms
Speed: 2.1ms preprocess, 135.6ms inference, 0.5ms postprocess per image at shape (1, 3, 640, 480)

模型修改完成,选择自己的分割数据进行训练,结果如下:

如上图,这里使用"l"大模型,只需yolov8-CBAMseg.yaml中加一个"l"变成yolov8l-CNeBseg.yaml,优化器为上一篇博客yolov8更改的Lion优化器。可以看到arguments参数按照"l"模型发生了调整,模型开始训练。

6 添加ConvNeXtV2模块

如果添加ConvNeXtV2模块ultralytics/nn/modules/conv.py文件末尾,后面还有新模块的话,conv.py会越来越长,一种整洁的方法时,在conv.py 的同级目录中新建一个自定义模块的py文件,然后在conv.py中引用并按照前面的添加过程也是可以的。

如下图:

convnextv2.py的代码如下:

python 复制代码
# coding=gbk
# 来源:https://blog.csdn.net/qq_42076902/article/details/129938723?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522172268630316800207028360%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=172268630316800207028360&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-4-129938723-null-null.142^v100^pc_search_result_base5&utm_term=convnext-V2%E7%BD%91%E7%BB%9C%E4%BB%A3%E7%A0%81&spm=1018.2226.3001.4187
# cited from: https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath


class ConvNeXtV2_Block(nn.Module):
    """ ConvNeXtV2 Block.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(self, dim, drop_path=0.):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self, in_chans=3, num_classes=1000,
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
                 drop_path_rate=0., head_init_scale=1.
                 ):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList()  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[ConvNeXtV2_Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward_features(self, x):
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
        return self.norm(x.mean([-2, -1]))  # global average pooling, (N, C, H, W) -> (N, C)

    def forward(self, x):
        x = self.forward_features(x)
        print(x.size())
        x = self.head(x)
        return x


def convnextv2_atto(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], num_classes=num_classes, **kwargs)
    return model


def convnextv2_femto(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], num_classes=num_classes, **kwargs)
    return model


def convnext_pico(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], num_classes=num_classes, **kwargs)
    return model


def convnextv2_nano(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], num_classes=num_classes, **kwargs)
    return model


def convnextv2_tiny(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], num_classes=num_classes, **kwargs)
    return model


def convnextv2_base(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], num_classes=num_classes, **kwargs)
    return model


def convnextv2_large(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], num_classes=num_classes, **kwargs)
    return model


def convnextv2_huge(num_classes=100, **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], num_classes=num_classes, **kwargs)
    return model

class CNeB(nn.Module):
    # CSP ConvNextBlock with 3 convolutons by is cyy/yoloair
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CNeB, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(ConvNeXtV2_Block(c_) for _ in range(n)))  #ConvNeXtV2_Block
 
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

if __name__ == "__main__":
    m = convnextv2_atto(num_classes=3)
    params = sum(p.numel() for p in m.parameters())
    print(params)
    input = torch.randn(1, 3, 256, 256)
    out = m(input)
    print(out.shape)

然后在conv.py 中引用ConvNeXtV2_Block模块

python 复制代码
from .covnextv2 import ConvNeXtV2_Block
class CNeBV2(nn.Module):
    # CSP ConvNextBlock with 3 convolutons by is cyy/yoloair
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CNeBV2, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(ConvNeXtV2_Block(c_) for _ in range(n)))  #ConvNeXtV2_Block

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

covnext的ConvNeXt_Block也可以改成上面的这种方式。

然后在conv.py前面申明模块名

在ultralytics/nn/modules/init .py中申明模块名

在ultralytics/nn/tasks.py中parse_model函数内解析yaml模型文件,添加如下语句:

上面将两个ConvNeXt版本合在一起处理,并开启了print,解析时会打印模块信息。

7 修改一个yaml文件

这里用之前修改的yolov8-CNeBseg.yaml文件复制一份,命名为yolov8-CNeBV2seg.yaml,然后将CNeB模块名改成CNeBV2即可:

python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 768]
  l: [1.00, 1.00, 512]
  x: [1.00, 1.25, 512]

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]] #2
  - [-1, 3, CNeBV2, [128]]       #-->3
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8-->4
  - [-1, 6, C2f, [256, True]] #4-->5
  - [-1, 6, CNeBV2, [256]]       #-->6
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16-->7
  - [-1, 6, C2f, [512, True]] #6-->8
  - [-1, 6, CNeBV2, [512]]       #-->9
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32-->10
  - [-1, 3, C2f, [1024, True]]  #8-->11
  - [-1, 3, CNeBV2, [1024]]      #-->12
  - [-1, 1, SPPF, [1024, 5]] # 9-->13

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]  #10-->14
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4-->15
  - [-1, 3, C2f, [512]] # 12-->16
  - [-1, 3, CNeBV2, [512]]       #-->17

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]  #13-->18
  - [[-1, 6], 1, Concat, [1]] # cat backbone P3-->19
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)-->20
  - [-1, 3, CNeBV2, [256]]       #-->21

  - [-1, 1, Conv, [256, 3, 2]]  #16-->22
  - [[-1, 17], 1, Concat, [1]] # cat head P4-->23
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)-->24
  - [-1, 3, CNeBV2, [512]]       #-->25

  - [-1, 1, Conv, [512, 3, 2]]  #19-->26
  - [[-1, 13], 1, Concat, [1]] # cat head P5-->27
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)-->28
  - [-1, 3, CNeBV2, [1024]]       #-->29

#  - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  - [[21, 25, 29], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

8 测试

与第5步一样的测试代码,将其中CFG变量改成如下代码:

python 复制代码
CFG = 'ultralytics/cfg/models/v8/yolov8l-CNeBV2seg.yaml'	#使用l模型加一个l字母

运行test_yolov8_CNeB_model.py,可以测试通过,接下来就可以拿去训练了。🚀🚀🚀

相关推荐
wx74085132611 分钟前
小琳AI课堂:机器学习
人工智能·机器学习
霍夫曼vx_helloworld735211 分钟前
yolov5/8/9/10模型在VOC数据集上的应用【代码+数据集+python环境+GUI系统】
yolo
FL162386312919 分钟前
[数据集][目标检测]车油口挡板开关闭合检测数据集VOC+YOLO格式138张2类别
人工智能·yolo·目标检测
YesPMP平台官方21 分钟前
AI+教育|拥抱AI智能科技,让课堂更生动高效
人工智能·科技·ai·数据分析·软件开发·教育
鸽芷咕40 分钟前
【Python报错已解决】ModuleNotFoundError: No module named ‘paddle‘
开发语言·python·机器学习·bug·paddle
FL16238631291 小时前
AI健身体能测试之基于paddlehub实现引体向上计数个数统计
人工智能
黑客-雨1 小时前
构建你的AI职业生涯:从基础知识到专业实践的路线图
人工智能·产品经理·ai大模型·ai产品经理·大模型学习·大模型入门·大模型教程
子午1 小时前
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
人工智能·python·cnn
风等雨归期1 小时前
【python】【绘制小程序】动态爱心绘制
开发语言·python·小程序
Adolf_19931 小时前
Flask-JWT-Extended登录验证, 不用自定义
后端·python·flask