在 Python 和 C++ 环境下安装和使用 ONNX Runtime

GPU 依赖项

对于 GPU 版本的 ONNX Runtime,需要安装 CUDA 和 cuDNN。请检查 CUDA 执行提供程序的要求以获取兼容版本的 CUDA 和 cuDNN。安装时请注意:

  • cuDNN 需要 ZLib,安装方法请参照 cuDNN 安装指南。
  • CUDA 和 cuDNN 的 bin 目录路径需要添加到环境变量 PATH 中。

《这部分可以去B站有很多教学视频讲的更详细》

Python 环境安装

安装 ONNX Runtime CPU 版本

要在 Python 环境中安装 ONNX Runtime 的 CPU 版本,可以使用以下命令:

复制代码
pip install onnxruntime

安装 ONNX Runtime GPU 版本 (CUDA )

复制代码
pip install onnxruntime-gpu

验证Python 示例

以下是一个简单的 Python 示例,用于加载和运行 ONNX 模型:

python 复制代码
import onnxruntime as ort

# 加载 ONNX 模型
session = ort.InferenceSession("model.onnx")

# 准备输入数据
input_name = session.get_inputs()[0].name
input_data = ...  # 根据模型要求准备输入数据

# 运行推理
result = session.run(None, {input_name: input_data})

# 输出结果
print(result)

C++ 环境安装

安装 ONNX Runtime CPU 版本

在 C++ 环境中安装 ONNX Runtime 的 CPU 版本,可以使用以下命令:

python 复制代码
# 克隆 ONNX Runtime 仓库
git clone --recursive https://github.com/microsoft/onnxruntime
cd onnxruntime

# 构建并安装
./build.sh --config Release --build_shared_lib

安装 ONNX Runtime GPU 版本 (CUDA 11.x)

要安装支持 CUDA 11.x 的 GPU 版本,可以使用以下步骤:

  1. 设置环境变量
python 复制代码
export PATH=/usr/local/cuda-11.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH
  1. 构建 ONNX Runtime
python 复制代码
./build.sh --config Release --use_cuda

《windows端可以用 vs编辑器配置相应的头文件、库文件》

C++ 验证示例

以下是一个简单的 C++ 示例,用于加载和运行 ONNX 模型:

cpp 复制代码
#include <onnxruntime/core/session/onnxruntime_cxx_api.h>
#include <vector>
#include <iostream>

int main() {
  // 初始化 ONNX Runtime
  Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "example");

  // 创建 SessionOptions
  Ort::SessionOptions session_options;
  session_options.SetIntraOpNumThreads(1);
  session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_BASIC);

  // 加载模型
  Ort::Session session(env, "model.onnx", session_options);

  // 获取模型输入信息
  Ort::AllocatorWithDefaultOptions allocator;
  const char* input_name = session.GetInputName(0, allocator);
  std::cout << "Input Name: " << input_name << std::endl;

  // 准备输入数据
  std::vector<float> input_data = ...;  // 根据模型要求准备输入数据
  std::vector<int64_t> input_shape = {1, 3, 224, 224};  // 示例输入形状

  // 创建输入 tensor
  Ort::Value input_tensor = Ort::Value::CreateTensor<float>(allocator, input_data.data(), input_data.size(), input_shape.data(), input_shape.size());

  // 运行推理
  auto output_tensors = session.Run(Ort::RunOptions{nullptr}, &input_name, &input_tensor, 1, session.GetOutputNames(allocator), 1);

  // 输出结果
  float* output_data = output_tensors[0].GetTensorMutableData<float>();
  std::cout << "Output: " << output_data[0] << std::endl;

  return 0;
}

通过上述步骤和示例代码,您可以在 Python 和 C++ 环境下安装并使用 ONNX Runtime 进行模型推理。

相关推荐
vyuvyucd2 分钟前
Python虚拟环境终极指南:venv到uv进阶
开发语言·python·uv
Tiny_React3 分钟前
Claude Code Skills 自优化架构设计
人工智能·设计模式
老兵发新帖3 分钟前
基于Label Studio的视频标注与YOLO模型训练全流程指南
python·yolo·音视频
彼岸花开了吗4 分钟前
构建AI智能体:八十二、潜藏秩序的发现:隐因子视角下的SVD推荐知识提取与机理阐释
人工智能·llm
努力犯错玩AI4 分钟前
如何在ComfyUI中使用Qwen-Image-Layered GGUF:完整安装和使用指南
前端·人工智能
张彦峰ZYF6 分钟前
生成式大模型的风险与治理:从技术隐患到合规落地的系统性分析
人工智能·内容安全·知识产权·模型安全·生成式大模型的风险与治理·个人信息合规治理·生成式人工智能服务管理暂行办法
明明如月学长6 分钟前
非技术人员也能轻松使用 Claude Code?Zed,让 AI 办公像记事本一样丝滑
人工智能
进阶的鱼7 分钟前
一文助你了解Langchain
python·langchain·agent
SamtecChina20238 分钟前
Electronica现场演示 | 严苛环境下的56G互连
大数据·网络·人工智能·算法·计算机外设
收菜福星8 分钟前
智能体来了:从 Python 开发者视角深度剖析与实践
python