0_(机器学习)逻辑回归介绍

模型简介

逻辑回归(logistic回归)即对数几率回归,它虽然被称作"回归",但却是一种用于二分类的分类方法。逻辑回归是通过分析一个样本被分为各个类的概率比较后得出该样本最有可能属于的类的一种分类方法。

逻辑回归公式推导

训练、测试过程简述

代码实现

python 复制代码
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import math
import numpy as np
'''定义sigmoid函数'''
def sigmoid(x):
    if x>0:
        return 1.0/(1.0+np.exp(-x))
    else:
        return np.exp(x)/(1.0+np.exp(x))

class LogisticRegression:
    def __init__(self,learning_rate=0.01,num_iterations=1000):
        self.learning_rate=learning_rate
        self.num_iterations=num_iterations
        self.weights=None
        self.bias=None

    def fit(self,X,y,weights,bias=0):
        #num_samples是样本的数量,num_features是样本特征的数量
        num_samples,num_features=X.shape
        self.weights=weights
        self.bias=bias
        for _ in range(self.num_iterations):
            y_pred=[]
            for x in X:
                dot=np.dot(x, self.weights)
                linear_model = dot + self.bias
                y_pred.append(sigmoid(linear_model))
            y_pred=np.array(y_pred)
            dw = (1 / num_samples) * np.dot(X.T, (y_pred - y))
            db = (1 / num_samples) * np.sum(y_pred - y)
            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

    def predict_prob(self, X):
        y_pred = []
        for x in X:
            dot = np.dot(x, self.weights)
            linear_model = dot + self.bias
            y_pred.append(sigmoid(linear_model))
        y_pred = np.array(y_pred)
        return y_pred

    def predict(self, X, threshold=0.5):
        y_pred_prob = self.predict_prob(X)
        y_pred = np.zeros_like(y_pred_prob)
        y_pred[y_pred_prob >= threshold] = 1
        return y_pred
    def calculate_accuracy(self,y_pred,y_test):
        sum=0
        for p,t in zip(y_pred,y_test):
            if p==t:
                sum+=1
        return float(sum)/float(len(y_pred))

if __name__ == "__main__":
    l=LogisticRegression()
    breast_cancer = load_breast_cancer()
    X = breast_cancer.data
    y = breast_cancer.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
    num_samples, num_features = X.shape
    #w = np.ones(num_features)
    w = np.zeros(num_features)
    l.fit(X_train,y_train,w)

    y_pred=l.predict(X_test)
    print(y_pred)
    print(y_test)
    print("准确率:",l.calculate_accuracy(y_pred,y_test))
相关推荐
骑自行车的码农7 分钟前
🍂 React DOM树的构建原理和算法
javascript·算法·react.js
CoderYanger33 分钟前
优选算法-优先级队列(堆):75.数据流中的第K大元素
java·开发语言·算法·leetcode·职场和发展·1024程序员节
希望有朝一日能如愿以偿34 分钟前
力扣每日一题:能被k整除的最小整数
数据结构·算法·leetcode
Controller-Inversion34 分钟前
力扣53最大字数组和
算法·leetcode·职场和发展
rit843249936 分钟前
基于感知节点误差的TDOA定位算法
算法
m0_3722570240 分钟前
ID3 算法为什么可以用来优化决策树
算法·决策树·机器学习
q***25211 小时前
SpringMVC 请求参数接收
前端·javascript·算法
数模加油站1 小时前
25认证杯C题成品论文第一弹【冲奖硬核+无盲点解析】
算法·数学建模·认证杯·25认证杯
MobotStone1 小时前
数字沟通之道
人工智能·算法
Together_CZ1 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing