ImageNet数据集和CIFAR-10数据集

一、为什么需要大量数据集

人工智能其实就是大数据的时代,无论是目标检测、图像分类、还是现在植入我们生活的推荐系统,"喂入"神经网络的数据越多,则识别效果越好、分类越准确。因此开源大型数据集的研究团队为人工智能的发展做了大量贡献。下面介绍关于图像方面的经典数据集。

二、ImageNet数据集

ImageNet:全称为 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)。它由斯坦福大学的李飞飞教授团队创建,并且在计算机视觉领域具有重要影响力。

ImageNet官网:www.image-net.org

数据集规模:

ImageNet 数据集包含超过 1400 万张标注好的图像。

类别:

ImageNet 数据集包含 22,000 个类别的图像。

ILSVRC 竞赛的子集包含 1,000 个类别,用于图像分类挑战。

图像大小:

图像大小各不相同,但通常会被预处理为标准大小(例如 224x224 像素)以输入到神经网络中。

应用领域:

ImageNet 被广泛用于训练和评估图像分类、物体检测和图像分割等计算机视觉任务中的深度学习模型。

三、CIFAR-10数据集

CIFAR-10:全称是 Canadian Institute For Advanced Research 10。该数据集由多伦多大学的 Geoffrey Hinton 和 Alex Krizhevsky 等人创建,是一个经典的机器学习和计算机视觉任务的数据集。

Geoffrey Hinton:深度学习大牛,图灵奖获得者。

CIFAR是加拿大高级研究院(Canadian Institute For Advanced Research)的缩写

CIFAR-10官网:https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10数据集由10个类别的60000张32x32彩色图像组成,每个类别有6000张图像。有50000个训练图像和10000个测试图像。

四、CIFAR-100数据集

CIFAR-100是比CIFAR-10类别更多的数据集,这个数据集就像CIFAR-10一样,除了它有100个类,每个类包含600个图像。每类有500个训练图像和100个测试图像。CIFAR-100中的100个类被分为20个Superclass。每个图像都有一个"精细"标签(它所属的类)和一个"粗略"标签(其所属的Superclass)。

相关推荐
Aurora_NeAr21 分钟前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-12322 分钟前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
BIYing_Aurora38 分钟前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉
数据与人工智能律师44 分钟前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
CHANG_THE_WORLD1 小时前
封装一个png的编码解码操作
图像处理·人工智能·计算机视觉
Edingbrugh.南空2 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星0072 小时前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车
时序数据说3 小时前
为什么时序数据库IoTDB选择Java作为开发语言
java·大数据·开发语言·数据库·物联网·时序数据库·iotdb
Codebee4 小时前
OneCode图表配置速查手册
大数据·前端·数据可视化
Jamie201901065 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能