ImageNet数据集和CIFAR-10数据集

一、为什么需要大量数据集

人工智能其实就是大数据的时代,无论是目标检测、图像分类、还是现在植入我们生活的推荐系统,"喂入"神经网络的数据越多,则识别效果越好、分类越准确。因此开源大型数据集的研究团队为人工智能的发展做了大量贡献。下面介绍关于图像方面的经典数据集。

二、ImageNet数据集

ImageNet:全称为 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)。它由斯坦福大学的李飞飞教授团队创建,并且在计算机视觉领域具有重要影响力。

ImageNet官网:www.image-net.org

数据集规模:

ImageNet 数据集包含超过 1400 万张标注好的图像。

类别:

ImageNet 数据集包含 22,000 个类别的图像。

ILSVRC 竞赛的子集包含 1,000 个类别,用于图像分类挑战。

图像大小:

图像大小各不相同,但通常会被预处理为标准大小(例如 224x224 像素)以输入到神经网络中。

应用领域:

ImageNet 被广泛用于训练和评估图像分类、物体检测和图像分割等计算机视觉任务中的深度学习模型。

三、CIFAR-10数据集

CIFAR-10:全称是 Canadian Institute For Advanced Research 10。该数据集由多伦多大学的 Geoffrey Hinton 和 Alex Krizhevsky 等人创建,是一个经典的机器学习和计算机视觉任务的数据集。

Geoffrey Hinton:深度学习大牛,图灵奖获得者。

CIFAR是加拿大高级研究院(Canadian Institute For Advanced Research)的缩写

CIFAR-10官网:https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10数据集由10个类别的60000张32x32彩色图像组成,每个类别有6000张图像。有50000个训练图像和10000个测试图像。

四、CIFAR-100数据集

CIFAR-100是比CIFAR-10类别更多的数据集,这个数据集就像CIFAR-10一样,除了它有100个类,每个类包含600个图像。每类有500个训练图像和100个测试图像。CIFAR-100中的100个类被分为20个Superclass。每个图像都有一个"精细"标签(它所属的类)和一个"粗略"标签(其所属的Superclass)。

相关推荐
MasterNeverDown2 小时前
如何将 DotNetFramework 项目打包成 NuGet 包并发布
大数据·hadoop·hdfs
中科岩创3 小时前
广西钦州刘永福故居钦江爆破振动自动化监测
大数据·物联网
大数据编程之光4 小时前
Flink-CDC 全面解析
大数据·flink
mm_exploration4 小时前
halcon三维点云数据处理(九)create_shape_model_3d_ignore_part_polarity
图像处理·3d·halcon·点云处理
GZ_TOGOGO5 小时前
华为大数据考试模拟真题(附答案)题库领取
大数据·华为
王子良.6 小时前
大数据生态系统:Hadoop(HDFS)、Hive、Spark、Flink、Kafka、Redis、ECharts、Zookeeper之间的关系详解
大数据·hive·hadoop·经验分享·学习·hdfs·spark
大力财经6 小时前
激发本地生意,抖音生活服务连锁商家生意同比增长超80%
大数据·人工智能
weixin_437398217 小时前
Elasticsearch学习(1) : 简介、索引库操作、文档操作、RestAPI、RestClient操作
java·大数据·spring boot·后端·学习·elasticsearch·全文检索
安的列斯凯奇7 小时前
Elasticsearch—索引库操作(增删查改)
大数据·elasticsearch·搜索引擎
金州饿霸8 小时前
hadoop-yarn常用命令
大数据·前端·hadoop