ImageNet数据集和CIFAR-10数据集

一、为什么需要大量数据集

人工智能其实就是大数据的时代,无论是目标检测、图像分类、还是现在植入我们生活的推荐系统,"喂入"神经网络的数据越多,则识别效果越好、分类越准确。因此开源大型数据集的研究团队为人工智能的发展做了大量贡献。下面介绍关于图像方面的经典数据集。

二、ImageNet数据集

ImageNet:全称为 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)。它由斯坦福大学的李飞飞教授团队创建,并且在计算机视觉领域具有重要影响力。

ImageNet官网:www.image-net.org

数据集规模:

ImageNet 数据集包含超过 1400 万张标注好的图像。

类别:

ImageNet 数据集包含 22,000 个类别的图像。

ILSVRC 竞赛的子集包含 1,000 个类别,用于图像分类挑战。

图像大小:

图像大小各不相同,但通常会被预处理为标准大小(例如 224x224 像素)以输入到神经网络中。

应用领域:

ImageNet 被广泛用于训练和评估图像分类、物体检测和图像分割等计算机视觉任务中的深度学习模型。

三、CIFAR-10数据集

CIFAR-10:全称是 Canadian Institute For Advanced Research 10。该数据集由多伦多大学的 Geoffrey Hinton 和 Alex Krizhevsky 等人创建,是一个经典的机器学习和计算机视觉任务的数据集。

Geoffrey Hinton:深度学习大牛,图灵奖获得者。

CIFAR是加拿大高级研究院(Canadian Institute For Advanced Research)的缩写

CIFAR-10官网:https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10数据集由10个类别的60000张32x32彩色图像组成,每个类别有6000张图像。有50000个训练图像和10000个测试图像。

四、CIFAR-100数据集

CIFAR-100是比CIFAR-10类别更多的数据集,这个数据集就像CIFAR-10一样,除了它有100个类,每个类包含600个图像。每类有500个训练图像和100个测试图像。CIFAR-100中的100个类被分为20个Superclass。每个图像都有一个"精细"标签(它所属的类)和一个"粗略"标签(其所属的Superclass)。

相关推荐
Lx35212 分钟前
Hadoop异常处理机制:优雅处理失败任务
大数据·hadoop
小嵌同学24 分钟前
Linux:malloc背后的实现细节
大数据·linux·数据库
IT毕设梦工厂1 小时前
大数据毕业设计选题推荐-基于大数据的国家基站整点数据分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·数据可视化
江瀚视野2 小时前
苹果要在抖音上卖iPhone了?苹果看上了抖音什么?
大数据
微三云-轩2 小时前
区块链系统:解决549 亿元积分商城是否违法的问题
大数据·小程序·重构·区块链·生活
项目題供诗3 小时前
Hadoop(八)
大数据·hadoop·分布式
在未来等你3 小时前
Kafka面试精讲 Day 7:消息序列化与压缩策略
大数据·分布式·面试·kafka·消息队列
在未来等你3 小时前
Kafka面试精讲 Day 10:事务机制与幂等性保证
大数据·分布式·面试·kafka·消息队列
武子康3 小时前
大数据-91 Spark广播变量:高效共享只读数据的最佳实践 RDD+Scala编程
大数据·后端·spark
deepwater_zone4 小时前
大数据(非结构化数据,Spark,MongoDB)
大数据