ImageNet数据集和CIFAR-10数据集

一、为什么需要大量数据集

人工智能其实就是大数据的时代,无论是目标检测、图像分类、还是现在植入我们生活的推荐系统,"喂入"神经网络的数据越多,则识别效果越好、分类越准确。因此开源大型数据集的研究团队为人工智能的发展做了大量贡献。下面介绍关于图像方面的经典数据集。

二、ImageNet数据集

ImageNet:全称为 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)。它由斯坦福大学的李飞飞教授团队创建,并且在计算机视觉领域具有重要影响力。

ImageNet官网:www.image-net.org

数据集规模:

ImageNet 数据集包含超过 1400 万张标注好的图像。

类别:

ImageNet 数据集包含 22,000 个类别的图像。

ILSVRC 竞赛的子集包含 1,000 个类别,用于图像分类挑战。

图像大小:

图像大小各不相同,但通常会被预处理为标准大小(例如 224x224 像素)以输入到神经网络中。

应用领域:

ImageNet 被广泛用于训练和评估图像分类、物体检测和图像分割等计算机视觉任务中的深度学习模型。

三、CIFAR-10数据集

CIFAR-10:全称是 Canadian Institute For Advanced Research 10。该数据集由多伦多大学的 Geoffrey Hinton 和 Alex Krizhevsky 等人创建,是一个经典的机器学习和计算机视觉任务的数据集。

Geoffrey Hinton:深度学习大牛,图灵奖获得者。

CIFAR是加拿大高级研究院(Canadian Institute For Advanced Research)的缩写

CIFAR-10官网:https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10数据集由10个类别的60000张32x32彩色图像组成,每个类别有6000张图像。有50000个训练图像和10000个测试图像。

四、CIFAR-100数据集

CIFAR-100是比CIFAR-10类别更多的数据集,这个数据集就像CIFAR-10一样,除了它有100个类,每个类包含600个图像。每类有500个训练图像和100个测试图像。CIFAR-100中的100个类被分为20个Superclass。每个图像都有一个"精细"标签(它所属的类)和一个"粗略"标签(其所属的Superclass)。

相关推荐
陈奕昆14 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
semantist@语校14 小时前
第五十一篇|构建日本语言学校数据模型:埼玉国际学院的城市结构与行为变量分析
java·大数据·数据库·人工智能·百度·ai·github
赵渝强老师14 小时前
【赵渝强老师】阿里云大数据集成开发平台DataWorks
大数据·阿里云·云计算
xieyan081114 小时前
卖出与止损策略
大数据
Elastic 中国社区官方博客15 小时前
使用 LangChain 和 Elasticsearch 开发一个 agentic RAG 助手
大数据·人工智能·elasticsearch·搜索引擎·ai·langchain·全文检索
z***026015 小时前
Python大数据可视化:基于大数据技术的共享单车数据分析与辅助管理系统_flask+hadoop+spider
大数据·python·信息可视化
知识分享小能手15 小时前
openEuler入门学习教程,从入门到精通,openEuler 24.03 环境下 Hadoop 全面实践指南(19)
大数据·hadoop·openeuler
艾莉丝努力练剑15 小时前
时光织网:基于Rokid AI眼镜的家庭智能协同中枢设计与实现
大数据·人工智能·kotlin·rokid
jiayong2316 小时前
Elasticsearch 完全指南:原理、优势与应用场景
大数据·elasticsearch·搜索引擎