【第十届泰迪杯数据挖掘挑战赛A题害虫识别】-农田害虫检测识别-高精度完整更新

农田害虫检测识别项目-高精度完整版

一、说明:

  • 该版本为基于泰迪杯完整害虫数据重新制作数据集、优化增强数据集、重新进行模型训练,达到高精度、高召回率的最优模型代码。
  • 包含论文、最优模型文件以及相关文件、原始数据集、训练数据集XML版、增强扩充数据集、处理过程代码、保姆级教程视频

二、效果展示

训练模型结果:


三、项目完整介绍

项目说明:

  • 利用附件1和附件2的信息,建立确定害虫位置及种类的模型和算法。

  • 应用问题1所建立的模型和算法对附件3中提及的图像进行识别,并确定害虫的位置,将结果存放在"result2.csv"文件中(模板文件见附件4中的result2.csv)。

  • 根据问题2得到的结果,对附件3中提及的图像文件中不同种类的害虫数量进行统计,将统计结果存放在"result3.csv"文件中(模板文件见附件4中的result3.csv)。

数据集介绍:

1、原始数据集(附件一):

包含3015张图片。其中有害虫标签的图片为576张,804张为待测图片、剩余图片为background

给出图片害虫坐标csv(附件二)

2、制作训练集data:

通过代码处理制作xml标注的文件。真实查看清晰的图片标注情况

3、数据增强扩充数据集:

通过代码、软件等工具进行数据增强扩充处理,因为一共有28种类别,所以原来训练集的576张图片不够,所以必须扩充数据。

4、模型训练参数配置:

python train.py --device 0 --weights ./weights/yolov5s.pt --cfg ./models/yolov5s.yaml --data ./data/hc.yaml --batch-size 4 --imgsz 1280 --epochs 100 --name hc_v1-b4_1280_100epo

预测结果展示:

四、完整更新版获取:

【腾讯文档】葡萄技术服务小店(商品列表)    
https://docs.qq.com/sheet/DWG9DSUpQcnVsZlZZ?tab=BB08J2
相关推荐
范桂飓4 分钟前
大规模 RDMA AI 组网技术创新:算法和可编程硬件的深度融合
人工智能
deflag17 分钟前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
pzx_00122 分钟前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友33 分钟前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志1 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客1231 小时前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路1 小时前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3
闻道且行之1 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
喝不完一杯咖啡2 小时前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
huaqianzkh2 小时前
理解构件的3种分类方法
人工智能·分类·数据挖掘