人工智能计算机视觉先锋——OpenCv 的颜色检测

红色

在计算机的世界里,只有 0 或者1,如何让计算机认识颜色是计算机视觉工作者首先需要考虑的事情,我们知道整个世界的颜色虽然五彩缤纷,但是都是3种原色彩合成的(R G B),有了(R G B)三源色,便可以通过调节不同的颜色比例来达到其他颜色的效果。

在计算机的世界里面,我们定义了(R G B)三源色的像素都在(0-255之间),通过配置这些数字,便可以显示不同的色彩

首先定义一个数组colist:

复制代码
import numpy as np
import cv2
image = cv2.imread("11.jpg")

colist = [
	([17, 15, 100], [50, 56, 200]),
	([86, 31, 4], [220, 88, 50]),
	([25, 146, 190]	, [62, 174, 250]),
	([103, 86, 65], [145, 133, 128])
]

在RGB色彩空间,当然opencv是在BGR的空间,定义了四种不同颜色的像素,同时代表了R G B ,gray

在这里,我们说图像中所有具有R> = 100G> = 15B> = 17 以及R <= 200G<= 56B <= 50的 像素 将被视为 红色,

具有R> = 4G> = 31B> = 86 以及R <= 50G<= 88B <= 220的 像素将被视为绿色

具有R> = 190G> = 146B> = 25 以及R <= 250G<= 174B <= 62的 像素将被视为黄色

具有R> = 65G> = 86B> = 103 以及R <= 128G<= 133B <= 145的 像素将被视为灰色

有了这些颜色的定义,我们便可以使用上下限的颜色数据,对图片中的颜色进行检测,

复制代码
for (lower, upper) in colist:
	lower = np.array(lower, dtype = "uint8")
	upper = np.array(upper, dtype = "uint8")
	mask = cv2.inRange(image, lower, upper)
	output = cv2.bitwise_and(image, image, mask = mask)
	cv2.imshow("images", np.hstack([image, output]))
	cv2.waitKey(0)

首先使用cv2.inRange(image, lower, upper)函数进行图片颜色的筛选

复制代码
mask = cv2.inRange(image, lower, upper) 
函数参数有三个
第一个参数:image指的是原图

第二个参数:lower指的是图像中低于这个lower的值,图像值变为0

第三个参数:upper指的是图像中高于这个upper的值,图像值变为0

而在lower~upper之间的值变成255

黄色

按照红色为例:通过以上函数的筛选,不是红色区域的都被置为0,而红色区域都被置为255

经过以上步骤,mask便是一个黑白的照片,其中不是红色的区域为黑色,红色区域为白色

然后使用cv2.bitwise_and函数对图片进行与操作

cv2.bitwise_and()是对二进制数据进行"与"操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制"与"操作,1&1=1,1&0=0,0&1=0,0&0=0

利用掩膜(mask)进行"与"操作,即掩膜图像白色区域是对需要处理图像像素的保留,黑色区域是对需要处理图像像素的剔除

这样我们便可以删除了除红色区域以外的其他颜色,保留了红色,当然其他颜色具有类似的原理

代码截图

最后我们显示一下图片中的颜色

绿色

当然你也可以使用L*a*b颜色空间,或者hsv颜色空间,什么叫L*a*b颜色空间,或者hsv颜色空间

python神经网络一键格式化黑白视频为彩色视频

python神经网络一键转变黑白照片为彩色照片

以上2篇文章主要介绍了lab空间的颜色使用

hsv颜色空间的使用,可以参考小编的专栏《打造属于自己的天眼目标追踪系统》中的颜色追踪

复制代码
更多transformer,VIT,swin tranformer
参考头条号:人工智能研究所
v号:启示AI科技

动画详解transformer 在线教程

相关推荐
锋行天下2 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮3 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水3 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊4 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘4 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15884 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
懷淰メ4 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的水体污染检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·水体污染
维维180-3121-14554 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI5 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment
xier_ran5 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习