吴恩达机器学习笔记 三十九 协同过滤的TensorFlow实现

TensorFlow的一个优点:可以自动算出成本函数的导数

如上图,设 f( x ) = wx,成本 J 为(wx - 1)^2,用GradientTape()这个函数,TensorFlow会记录计算成本J所需的操作序列,保存在 tape 中。 dJdw为自动计算出的导数。 TensorFlow中这个被称为AutoDiff,一些其他的机器学习包,例如pytorch也支持AutoDiff,有时也称autograd。

协同过滤的TensorFlow实现:

相关推荐
lkbhua莱克瓦241 分钟前
Java基础——常用算法4
java·数据结构·笔记·算法·github·排序算法·快速排序
云雾J视界13 分钟前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类
学渣6765617 分钟前
11111
笔记
MeowKnight95818 分钟前
【DIY】PCB练习记录2——51单片机核心板
笔记
极客学术工坊3 小时前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
Theodore_10224 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
tjsoft7 小时前
网站如何被百度收录之探索笔记
笔记
极客学术工坊8 小时前
2022年第十二届MathorCup高校数学建模挑战赛-D题 移动通信网络站址规划和区域聚类问题
机器学习·数学建模·启发式算法·聚类
QT 小鲜肉9 小时前
【个人成长笔记】在 Linux 系统下撰写老化测试脚本以实现自动压测效果(亲测有效)
linux·开发语言·笔记·单片机·压力测试
MeowKnight9589 小时前
【Qt】Qt实践记录2——TCP通信服务器和客户端demo
笔记·qt