吴恩达机器学习笔记 三十九 协同过滤的TensorFlow实现

TensorFlow的一个优点:可以自动算出成本函数的导数

如上图,设 f( x ) = wx,成本 J 为(wx - 1)^2,用GradientTape()这个函数,TensorFlow会记录计算成本J所需的操作序列,保存在 tape 中。 dJdw为自动计算出的导数。 TensorFlow中这个被称为AutoDiff,一些其他的机器学习包,例如pytorch也支持AutoDiff,有时也称autograd。

协同过滤的TensorFlow实现:

相关推荐
18号房客9 分钟前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
Somnus陳30 分钟前
软考架构师笔记-计算机系统组成-1
笔记·系统架构
QQ_77813297436 分钟前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
IT古董1 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生1 小时前
机器学习连载
人工智能·机器学习
Trouvaille ~2 小时前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
LuH11242 小时前
【论文阅读笔记】IC-Light
论文阅读·笔记
是小菜呀!2 小时前
实验四 触发器
笔记
悲伤小伞2 小时前
C++_数据结构_详解二叉搜索树
c语言·数据结构·c++·笔记·算法
灰太狼不爱写代码5 小时前
CUDA11.4版本的Pytorch下载
人工智能·pytorch·笔记·python·学习