【OpenCV C++20 学习笔记】拉普拉斯(Laplace)二阶求导-边缘检测

拉普拉斯二阶求导

  • 原理
    • [拉普拉斯算子(Laplacian Operator)](#拉普拉斯算子(Laplacian Operator))
  • API
  • 实例

原理

在OpenCV中,Sobel算法可以对图片中的值求一阶导数,从而计算出图片中的边缘线。其原理如下面的示意图:

那么,如果再求一次导数的,即求二阶导数,其实也可以找出这个颜色值显著变化的分界点:

可以看到,现在颜色值显著变化的位置,其导数值为0.

但是这有一个问题,就是二阶导数为0的也可以是一些无意义的值。所以,必须要进行一些过滤。

拉普拉斯算子(Laplacian Operator)

拉普拉斯算子的算法公式定义如下:
L a p l a c e ( f ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 Laplace(f) = \frac{\partial^2f}{\partial x^2} + \frac{\partial^2f}{\partial y^2} Laplace(f)=∂x2∂2f+∂y2∂2f

可以看到拉普拉斯算法可以同时对两个维度进行求导,这是它相对于Sobel算法的优势。但是由于拉普拉斯算法还是要求斜率,所以其内部仍然调用了Sobel算法。

API

在OpenCV中,使用Laplacian()函数来进行拉普拉斯计算,其函数原型如下:

cpp 复制代码
void cv::Laplacian(	InputArray	src,							//输入图
					OutputArray	dst,							//输出图
					int			ddepth,							//输出的数据类型,-1表示与输入图一致
					int			ksize = 1,						//卷积核尺寸,必须是正奇数
					double		scale =1,						//计算结果的放大系数,默认为1,即不放大
					double		delta = 0,						//计算结果的偏移值,默认为0,即不偏移
					int			borderType = BORDER_DEFAULT)	//图像边缘的扩充方式,默认为镜像复制
  • ksize = 1时,使用一个 3 × 3 3 \times 3 3×3的卷积核,如下:

    0 1 0 1 − 4 1 0 1 0 \] \\begin{bmatrix} 0 \& 1 \& 0 \\\\ 1 \& -4 \& 1 \\\\ 0 \& 1 \& 0 \\end{bmatrix} 0101−41010

实例

在进行拉普拉斯求导之前也要进行滤波和灰度化,以去除噪音。

这里我们将拉普拉斯计算的结果中的数据类型定义为CV_16S,是为了防止溢出。接着又通过convertScaleAbs()函数转换回了CV_8U类型。

完整代码如下:

cpp 复制代码
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;

int main() {
	Mat src{ imread("lena.jpg") };

	//高斯滤波
	Mat blured;
	GaussianBlur(src, blured, Size(3, 3), 0, 0, BORDER_DEFAULT);

	//灰度化
	Mat gray;
	cvtColor(blured, gray, COLOR_BGR2GRAY);

	//拉普拉斯
	Mat dst;
	Laplacian(gray, dst, CV_16S, 3, 1, 0, BORDER_DEFAULT);

	//转换为CV_8U
	Mat abs_dst;
	convertScaleAbs(dst, abs_dst);

	imshow("原图", src);
	imshow("Laplace", abs_dst);
	waitKey(0);
}

运行结果如下:

相关推荐
Jerry.张蒙8 小时前
SAP传输请求流程:从开发到生产的安全流转
大数据·网络·人工智能·学习·职场和发展·区块链·运维开发
Century_Dragon8 小时前
VR+智能评——比亚迪秦EV整车检测与诊断仿真实训系统
学习
victory04318 小时前
大模型后训练学习计划 02 verl llamafactory
学习
tfjy19979 小时前
网络基础学习
网络·学习
Miketutu9 小时前
操作系统中进程与作业的概念区分
学习
TL滕9 小时前
从0开始学算法——第三天(数据结构的操作)
数据结构·笔记·学习·算法
九千七5269 小时前
sklearn学习(4)K近邻(KNN)
人工智能·学习·机器学习·sklearn·knn·近邻搜索
Lyre丶9 小时前
ginan入门初探
linux·经验分享·学习·ubuntu
TL滕9 小时前
从0开始学算法——第三天(数据结构的多样性)
数据结构·笔记·学习·算法
光影少年10 小时前
WebGIS 和GIS学习路线图
学习·前端框架·webgl