PyTorch重写DataSet类

PyTorch重写DataSet类


文章目录


前言

在之前沐神的Cifar-10分类 课程学习中,沐神是用的将每一类创建一个文件夹去完成图片的导入。此外我们还可以通过重写DataSet类来完成!

一、如何重写?

通过查看官方文档我们可知。

需要去重写__getitem__这个方法,去以一种特定的方法拿到一个数据。并且选择性的重写__len__这个方法,去返回整个数据集的大小。

二、具体代码

1.数据集格式

这个数据集是沐神课程上讲过的cifar-10数据集。

train和test文件夹分别为要进行训练和测试的图片。而训练数据的标签以csv文件存在trainLabels.csv文件中。

2.获取标签

python 复制代码
def read_csv_labels(fname):
    with open(fname,'r') as f:
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name,label) for name,label in tokens))

这里通过一个read_csv_labels的方法 将图片名字和标签以一个字典的方式返回

3.重写dataset

python 复制代码
class MyDateset(Dataset):
    def __init__(self,root_dir,state,label_dict=None):
        self.root_dir = root_dir
        self.state = state
        if label_dict is not None:
            self.label_dict = label_dict
        self.img_path = os.listdir(os.path.join(root_dir,state))
        # os.listdir 将当前文件夹下的图片名称按列表返回

    def __getitem__(self, idx):
        img = Image.open(os.path.join(self.root_dir,self.state,self.img_path[idx]))
        if self.state == 'train':
            img_num =self.img_path[idx].split('.')[0]
            # 这个取出来是数字.jpg 所以需要将.jpg舍去
            label = self.label_dict[img_num]
            return img,label
        else:
            return img

    def __len__(self):
        return len(self.img_path)

state参数表示此时是训练数据集还是测试数据集。

4.调用

python 复制代码
root_dir = "D:\\PytorchLearn\\cifar-10"
label_dict = read_csv_labels(os.path.join(root_dir,"trainLabels.csv"))

train_dataset = MyDateset(root_dir,'train',label_dict)

test_dataset = MyDateset(root_dir,'test')

train_iter = torch.utils.data.DataLoader(train_dataset,batch_size=8,shuffle=True)

总结

以上就是重写DataSet的方法,有不足之处还望各位指出。

相关推荐
Clarence Liu3 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型4 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室4 小时前
AI4Science开源汇总
人工智能
CeshirenTester4 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
Starry_hello world4 小时前
Python (2)
python
relis4 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs4 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
ID_180079054734 小时前
Python爬取京东商品库存数据与价格监控
jvm·python·oracle
泯泷4 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极4 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发