PyTorch重写DataSet类

PyTorch重写DataSet类


文章目录


前言

在之前沐神的Cifar-10分类 课程学习中,沐神是用的将每一类创建一个文件夹去完成图片的导入。此外我们还可以通过重写DataSet类来完成!

一、如何重写?

通过查看官方文档我们可知。

需要去重写__getitem__这个方法,去以一种特定的方法拿到一个数据。并且选择性的重写__len__这个方法,去返回整个数据集的大小。

二、具体代码

1.数据集格式

这个数据集是沐神课程上讲过的cifar-10数据集。

train和test文件夹分别为要进行训练和测试的图片。而训练数据的标签以csv文件存在trainLabels.csv文件中。

2.获取标签

python 复制代码
def read_csv_labels(fname):
    with open(fname,'r') as f:
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name,label) for name,label in tokens))

这里通过一个read_csv_labels的方法 将图片名字和标签以一个字典的方式返回

3.重写dataset

python 复制代码
class MyDateset(Dataset):
    def __init__(self,root_dir,state,label_dict=None):
        self.root_dir = root_dir
        self.state = state
        if label_dict is not None:
            self.label_dict = label_dict
        self.img_path = os.listdir(os.path.join(root_dir,state))
        # os.listdir 将当前文件夹下的图片名称按列表返回

    def __getitem__(self, idx):
        img = Image.open(os.path.join(self.root_dir,self.state,self.img_path[idx]))
        if self.state == 'train':
            img_num =self.img_path[idx].split('.')[0]
            # 这个取出来是数字.jpg 所以需要将.jpg舍去
            label = self.label_dict[img_num]
            return img,label
        else:
            return img

    def __len__(self):
        return len(self.img_path)

state参数表示此时是训练数据集还是测试数据集。

4.调用

python 复制代码
root_dir = "D:\\PytorchLearn\\cifar-10"
label_dict = read_csv_labels(os.path.join(root_dir,"trainLabels.csv"))

train_dataset = MyDateset(root_dir,'train',label_dict)

test_dataset = MyDateset(root_dir,'test')

train_iter = torch.utils.data.DataLoader(train_dataset,batch_size=8,shuffle=True)

总结

以上就是重写DataSet的方法,有不足之处还望各位指出。

相关推荐
AndrewHZ7 分钟前
【图像处理基石】GIS图像处理入门:4个核心算法与Python实现(附完整代码)
图像处理·python·算法·计算机视觉·gis·cv·地理信息系统
掘金安东尼11 分钟前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN666818 分钟前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费28 分钟前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack30 分钟前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒38 分钟前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
帮帮志39 分钟前
目录【系列文章目录】-(关于帮帮志,关于作者)
java·开发语言·python·链表·交互
MicroTech20251 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆1 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊1 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构