🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊
文章目录
电脑环境:
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:tensorflow 2.15.0
一、前期工作
1.设置GPU(如果使用的是CPU可以忽略这步)
python
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
2. 导入数据
python
from tensorflow import keras
from tensorflow.keras import layers,models
import numpy as np
import matplotlib.pyplot as plt
import os,PIL,pathlib
data_dir = "./49-data/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.png')))
print("图片总数为:",image_count)
输出:图片总数为: 1200
二、数据预处理
1、加载数据
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。
python
batch_size = 32
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
python
class_names = train_ds.class_names
print(class_names)
输出:
['Dark', 'Green', 'Light', 'Medium']
2、数据可视化
python
plt.figure(figsize=(10, 4)) # 图形的宽为10高为5
for images, labels in train_ds.take(1):
for i in range(10):
ax = plt.subplot(2, 5, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
python
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
输出:
(32, 224, 224, 3)
(32,)
3、配置数据集
python
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]
# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
输出:
0.0 1.0
三、构建CNN网络
调用官方的VGG-16网络框架:
python
from keras.applications import VGG16
VGG16 = VGG16(weights='imagenet')
VGG16.summary()
网络结构:
python
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 224, 224, 3)] 0
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten (Flatten) (None, 25088) 0
fc1 (Dense) (None, 4096) 102764544
fc2 (Dense) (None, 4096) 16781312
predictions (Dense) (None, 1000) 4097000
=================================================================
Total params: 138357544 (527.79 MB)
Trainable params: 138357544 (527.79 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
四、编译
python
# 设置初始学习率
initial_learning_rate = 1e-4
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=30, # 敲黑板!!!这里是指 steps,不是指epochs
decay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr
staircase=True)
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
五、训练模型
python
epochs = 20
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
输出:
python
30/30 ━━━━━━━━━━━━━━━━━━━━ 250s 2s/step - accuracy: 0.2618 - loss: 2.4494 - val_accuracy: 0.5917 - val_loss: 0.9642
Epoch 2/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 33s 574ms/step - accuracy: 0.5156 - loss: 0.9331 - val_accuracy: 0.7167 - val_loss: 0.5675
Epoch 3/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 567ms/step - accuracy: 0.7658 - loss: 0.4992 - val_accuracy: 0.8542 - val_loss: 0.3884
Epoch 4/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 557ms/step - accuracy: 0.8599 - loss: 0.3491 - val_accuracy: 0.9458 - val_loss: 0.2667
Epoch 5/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 556ms/step - accuracy: 0.9275 - loss: 0.2271 - val_accuracy: 0.9708 - val_loss: 0.1413
Epoch 6/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 563ms/step - accuracy: 0.9844 - loss: 0.0544 - val_accuracy: 0.9750 - val_loss: 0.0923
Epoch 7/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 571ms/step - accuracy: 0.9813 - loss: 0.0494 - val_accuracy: 0.9833 - val_loss: 0.0411
Epoch 8/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 560ms/step - accuracy: 0.9852 - loss: 0.0428 - val_accuracy: 0.9958 - val_loss: 0.0133
Epoch 9/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 568ms/step - accuracy: 0.9824 - loss: 0.0479 - val_accuracy: 0.9875 - val_loss: 0.0341
Epoch 10/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 569ms/step - accuracy: 0.9967 - loss: 0.0119 - val_accuracy: 0.9875 - val_loss: 0.0725
Epoch 11/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 571ms/step - accuracy: 0.9833 - loss: 0.0462 - val_accuracy: 0.9583 - val_loss: 0.1175
Epoch 12/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 17s 562ms/step - accuracy: 0.9858 - loss: 0.0534 - val_accuracy: 0.9500 - val_loss: 0.1280
Epoch 13/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 567ms/step - accuracy: 0.9805 - loss: 0.0719 - val_accuracy: 0.9917 - val_loss: 0.0282
Epoch 14/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 17s 561ms/step - accuracy: 0.9886 - loss: 0.0376 - val_accuracy: 0.9625 - val_loss: 0.1005
Epoch 15/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 567ms/step - accuracy: 0.9901 - loss: 0.0305 - val_accuracy: 0.9917 - val_loss: 0.0467
Epoch 16/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 569ms/step - accuracy: 1.0000 - loss: 0.0024 - val_accuracy: 0.9917 - val_loss: 0.0475
Epoch 17/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 17s 571ms/step - accuracy: 0.9955 - loss: 0.0090 - val_accuracy: 0.9625 - val_loss: 0.1122
Epoch 18/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 559ms/step - accuracy: 0.9949 - loss: 0.0186 - val_accuracy: 0.9917 - val_loss: 0.0140
Epoch 19/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 568ms/step - accuracy: 0.9992 - loss: 0.0022 - val_accuracy: 0.9958 - val_loss: 0.0140
Epoch 20/20
30/30 ━━━━━━━━━━━━━━━━━━━━ 20s 569ms/step - accuracy: 1.0000 - loss: 4.4589e-04 - val_accuracy: 1.0000 - val_loss: 0.0025
六、可视化结果
python
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
七、轻量化模型
上边我们可以看到官方的VGG16模型的Total params: 138 357 544 (527.79 MB)。
1、冻结VGG16网络
现在尝试只加载下图的除去绿色的部分,并且冻结模型的卷基层的权重参数,让它们不参加训练,手动加上自定义的全连接层和Dropout层。
python
VGG16 = tf.keras.applications.VGG16(weights="imagenet", include_top=False, input_shape=(224, 224, 3))
VGG16.trainable = False
# 创建输入层
inputs = tf.keras.Input(shape=(224, 224, 3))
# 使用 VGG16 作为卷积基
x = VGG16(inputs, training=False)
# 添加自定义的全连接层
x = layers.Flatten()(x)
x = layers.Dense(256, activation='relu')(x)
x = layers.Dropout(0.4)(x)
x = layers.Dense(128, activation='relu')(x)
x = layers.Dropout(0.4)(x)
outputs = layers.Dense(len(class_names))(x)
# 创建完整的模型
model = tf.keras.Model(inputs, outputs)
# 查看模型结构
model.summary()
输出:
python
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ input_layer_11 (InputLayer) │ (None, 224, 224, 3) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ vgg16 (Functional) │ (None, 7, 7, 512) │ 14,714,688 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_6 (Flatten) │ (None, 25088) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_12 (Dense) │ (None, 256) │ 6,422,784 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_6 (Dropout) │ (None, 256) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_13 (Dense) │ (None, 128) │ 32,896 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_7 (Dropout) │ (None, 128) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_14 (Dense) │ (None, 4) │ 516 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 21,170,884 (80.76 MB)
Trainable params: 6,456,196 (24.63 MB)
Non-trainable params: 14,714,688 (56.13 MB)
这里咱们可以看到Total params: 21,170,884 (80.76 MB)
,相比于原模型,降低了很多。使用这个模型重新训练。当然要重新编译一次,并且增加了epochs=30。
python
# 设置初始学习率
initial_learning_rate = 1e-4
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=30, # 敲黑板!!!这里是指 steps,不是指epochs
decay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr
staircase=True)
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 30
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
输出:
python
Epoch 1/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 14s 317ms/step - accuracy: 0.2922 - loss: 1.5063 - val_accuracy: 0.7542 - val_loss: 0.9573
Epoch 2/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 14s 163ms/step - accuracy: 0.6025 - loss: 1.0074 - val_accuracy: 0.8042 - val_loss: 0.7020
Epoch 3/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 179ms/step - accuracy: 0.7010 - loss: 0.7734 - val_accuracy: 0.8042 - val_loss: 0.5710
Epoch 4/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 174ms/step - accuracy: 0.7596 - loss: 0.6712 - val_accuracy: 0.8417 - val_loss: 0.4787
Epoch 5/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 166ms/step - accuracy: 0.8236 - loss: 0.5016 - val_accuracy: 0.8625 - val_loss: 0.4037
Epoch 6/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 161ms/step - accuracy: 0.8319 - loss: 0.4423 - val_accuracy: 0.8875 - val_loss: 0.3518
Epoch 7/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 162ms/step - accuracy: 0.8855 - loss: 0.3870 - val_accuracy: 0.9208 - val_loss: 0.3057
Epoch 8/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 164ms/step - accuracy: 0.8768 - loss: 0.3587 - val_accuracy: 0.9042 - val_loss: 0.2942
Epoch 9/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 162ms/step - accuracy: 0.9260 - loss: 0.2672 - val_accuracy: 0.9167 - val_loss: 0.2513
Epoch 10/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 174ms/step - accuracy: 0.9284 - loss: 0.2532 - val_accuracy: 0.9083 - val_loss: 0.2328
Epoch 11/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 172ms/step - accuracy: 0.9358 - loss: 0.2266 - val_accuracy: 0.9083 - val_loss: 0.2321
Epoch 12/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 164ms/step - accuracy: 0.9291 - loss: 0.2178 - val_accuracy: 0.9167 - val_loss: 0.2157
Epoch 13/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 160ms/step - accuracy: 0.9431 - loss: 0.1964 - val_accuracy: 0.9042 - val_loss: 0.2257
Epoch 14/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 172ms/step - accuracy: 0.9477 - loss: 0.1889 - val_accuracy: 0.9208 - val_loss: 0.2035
Epoch 15/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 165ms/step - accuracy: 0.9608 - loss: 0.1353 - val_accuracy: 0.9417 - val_loss: 0.1697
Epoch 16/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 173ms/step - accuracy: 0.9588 - loss: 0.1484 - val_accuracy: 0.9458 - val_loss: 0.1746
Epoch 17/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 160ms/step - accuracy: 0.9762 - loss: 0.1211 - val_accuracy: 0.9458 - val_loss: 0.1554
Epoch 18/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 172ms/step - accuracy: 0.9661 - loss: 0.1170 - val_accuracy: 0.9250 - val_loss: 0.1851
Epoch 19/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 166ms/step - accuracy: 0.9814 - loss: 0.0967 - val_accuracy: 0.9458 - val_loss: 0.1436
Epoch 20/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 163ms/step - accuracy: 0.9648 - loss: 0.1073 - val_accuracy: 0.9375 - val_loss: 0.1661
Epoch 21/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 175ms/step - accuracy: 0.9728 - loss: 0.1074 - val_accuracy: 0.9375 - val_loss: 0.1564
Epoch 22/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 161ms/step - accuracy: 0.9784 - loss: 0.0851 - val_accuracy: 0.9458 - val_loss: 0.1421
Epoch 23/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 176ms/step - accuracy: 0.9789 - loss: 0.0706 - val_accuracy: 0.9500 - val_loss: 0.1287
Epoch 24/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 172ms/step - accuracy: 0.9859 - loss: 0.0609 - val_accuracy: 0.9458 - val_loss: 0.1368
Epoch 25/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 175ms/step - accuracy: 0.9770 - loss: 0.0786 - val_accuracy: 0.9500 - val_loss: 0.1299
Epoch 26/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 172ms/step - accuracy: 0.9870 - loss: 0.0650 - val_accuracy: 0.9417 - val_loss: 0.1297
Epoch 27/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 173ms/step - accuracy: 0.9949 - loss: 0.0503 - val_accuracy: 0.9500 - val_loss: 0.1228
Epoch 28/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 176ms/step - accuracy: 0.9891 - loss: 0.0494 - val_accuracy: 0.9500 - val_loss: 0.1257
Epoch 29/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 174ms/step - accuracy: 0.9915 - loss: 0.0540 - val_accuracy: 0.9583 - val_loss: 0.1188
Epoch 30/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 5s 176ms/step - accuracy: 0.9966 - loss: 0.0372 - val_accuracy: 0.9500 - val_loss: 0.1244
输出结果val_accuracy稍微有点降低。
2、模型微调
在上个冻结了模型所有卷基层的基础上,解冻最后的三个卷基层Conv5-1 ~ Conv5-3
。就是只冻结下图的Conv1-1 ~ Conv4-3
的卷基层权重参数,让最后三个卷基层加上全连接层的权重参数加入训练。
python
VGG16.trainable = True
set_trainable = False
for layer in VGG16.layers:
if layer.name == 'block5_conv1':
set_trainable = True
if set_trainable:
layer.trainable = True
else:
layer.trainable = False
把学习率调成1e-5。
python
# 设置初始学习率
initial_learning_rate = 1e-5
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=30, # 敲黑板!!!这里是指 steps,不是指epochs
decay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr
staircase=True)
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 30
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
输出:
python
Epoch 1/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 21s 346ms/step - accuracy: 0.3300 - loss: 1.4454 - val_accuracy: 0.7750 - val_loss: 0.8242
Epoch 2/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 287ms/step - accuracy: 0.6962 - loss: 0.7934 - val_accuracy: 0.8500 - val_loss: 0.3991
Epoch 3/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 276ms/step - accuracy: 0.9098 - loss: 0.3187 - val_accuracy: 0.9542 - val_loss: 0.1491
Epoch 4/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 11s 288ms/step - accuracy: 0.9697 - loss: 0.1277 - val_accuracy: 0.9625 - val_loss: 0.0942
Epoch 5/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 274ms/step - accuracy: 0.9853 - loss: 0.0623 - val_accuracy: 0.9792 - val_loss: 0.0659
Epoch 6/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 282ms/step - accuracy: 0.9858 - loss: 0.0599 - val_accuracy: 0.9917 - val_loss: 0.0354
Epoch 7/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 282ms/step - accuracy: 0.9999 - loss: 0.0190 - val_accuracy: 0.9958 - val_loss: 0.0305
Epoch 8/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 272ms/step - accuracy: 0.9956 - loss: 0.0168 - val_accuracy: 0.9917 - val_loss: 0.0269
Epoch 9/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 273ms/step - accuracy: 0.9986 - loss: 0.0110 - val_accuracy: 0.9917 - val_loss: 0.0347
Epoch 10/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 11s 284ms/step - accuracy: 0.9961 - loss: 0.0134 - val_accuracy: 0.9917 - val_loss: 0.0341
Epoch 11/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 9s 284ms/step - accuracy: 0.9977 - loss: 0.0107 - val_accuracy: 0.9750 - val_loss: 0.0644
Epoch 12/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 275ms/step - accuracy: 0.9986 - loss: 0.0110 - val_accuracy: 0.9958 - val_loss: 0.0176
Epoch 13/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 274ms/step - accuracy: 0.9992 - loss: 0.0046 - val_accuracy: 0.9875 - val_loss: 0.0300
Epoch 14/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 272ms/step - accuracy: 1.0000 - loss: 0.0041 - val_accuracy: 0.9958 - val_loss: 0.0173
Epoch 15/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 272ms/step - accuracy: 0.9978 - loss: 0.0038 - val_accuracy: 0.9917 - val_loss: 0.0214
Epoch 16/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 9s 286ms/step - accuracy: 0.9980 - loss: 0.0032 - val_accuracy: 0.9958 - val_loss: 0.0172
Epoch 17/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 274ms/step - accuracy: 1.0000 - loss: 0.0016 - val_accuracy: 0.9958 - val_loss: 0.0159
Epoch 18/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 284ms/step - accuracy: 1.0000 - loss: 7.7434e-04 - val_accuracy: 0.9958 - val_loss: 0.0117
Epoch 19/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 284ms/step - accuracy: 0.9999 - loss: 9.1304e-04 - val_accuracy: 0.9875 - val_loss: 0.0346
Epoch 20/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 274ms/step - accuracy: 0.9979 - loss: 0.0085 - val_accuracy: 0.9792 - val_loss: 0.0438
Epoch 21/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 274ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 0.9958 - val_loss: 0.0127
Epoch 22/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 273ms/step - accuracy: 1.0000 - loss: 0.0012 - val_accuracy: 0.9958 - val_loss: 0.0208
Epoch 23/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 272ms/step - accuracy: 1.0000 - loss: 0.0011 - val_accuracy: 0.9958 - val_loss: 0.0110
Epoch 24/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 11s 284ms/step - accuracy: 1.0000 - loss: 6.0428e-04 - val_accuracy: 0.9958 - val_loss: 0.0131
Epoch 25/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 286ms/step - accuracy: 1.0000 - loss: 6.6759e-04 - val_accuracy: 0.9958 - val_loss: 0.0158
Epoch 26/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 286ms/step - accuracy: 1.0000 - loss: 4.9527e-04 - val_accuracy: 0.9917 - val_loss: 0.0167
Epoch 27/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 273ms/step - accuracy: 1.0000 - loss: 5.7670e-04 - val_accuracy: 0.9917 - val_loss: 0.0248
Epoch 28/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 272ms/step - accuracy: 1.0000 - loss: 9.7004e-04 - val_accuracy: 0.9958 - val_loss: 0.0109
Epoch 29/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 11s 285ms/step - accuracy: 1.0000 - loss: 2.0821e-04 - val_accuracy: 0.9958 - val_loss: 0.0136
Epoch 30/30
30/30 ━━━━━━━━━━━━━━━━━━━━ 10s 286ms/step - accuracy: 1.0000 - loss: 1.2448e-04 - val_accuracy: 0.9958 - val_loss: 0.0149
从输出结果看,val_accuracy最高为0.9958,接近1,精度损失这样的程度下,但是模型大小是降到了接近原模型的1/7,还算是成功。