spark--练习1

需求

利用sparksql读取data.csv文件,统计如下结果

1.统计每个姓氏以及人数,不考虑复姓

2.统计每个生肖以及人数

3.统计每个年龄段的人数,期望结果

年龄段 人数

1 - 10 xx

11 - 20 xx

21 - 30 xx

...

4.统计每个省份积分最高的前3个人

姓名 分数 省份 排名

data.csv文件:

1.统计每个姓氏以及人数,不考虑复姓

python 复制代码
from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession.builder \
        .appName("测试") \
        .getOrCreate()

    df = spark.read.option('header',True).csv('data.csv')
    df.createTempView('t1')
    #1.统计每个姓氏以及人数,不考虑复姓
    #substring(name, 0, 1) 将从 name 字符串中
    #提取从索引 0(包含)到索引 1(不包含)的子字符串,即第一个字符。
    spark.sql('''
                select substring(name,0,1) xing,count(*) cnt
                from t1
                group by substring(name,0,1)
              ''').show()

2.统计每个生肖以及人数

python 复制代码
from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession.builder \
        .appName("测试") \
        .getOrCreate()

    df = spark.read.option('header',True).csv('data.csv')
    df.createTempView('t1')
    def computer_animals(year):
        arr = ['鼠','牛','虎','兔','龙','蛇','马','羊','猴','鸡','狗','猪']
        return arr[(int(year)-4)%12]
    #
    # # #2.统计每个生肖以及人数
    '''
    使用spark.udf.register将Python函数computer_animals注册为Spark SQL的UDF(用户定义函数),以便在SQL查询中使用。
    
    SQL查询首先从t1视图中提取每个人的生日年份(
    这里通过substring(birthday,0,4)提取年份),然后使用注册的UDF computer_animals计算对应的生肖。
    最后,按生肖分组并计算每个生肖的人数。查询结果通过.show()方法显示出来。
    '''
    spark.udf.register('computer_animals',computer_animals)
    spark.sql('''
                select computer_animals(substring(birthday,0,4)) animals,count(*) cnt
                from t1
                group by computer_animals(substring(birthday,0,4))
              ''').show()

3.统计每个年龄段的人数

python 复制代码
from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession.builder \
        .appName("测试") \
        .getOrCreate()

    df = spark.read.option('header',True).csv('data.csv')
    df.createTempView('t1')

    spark.sql('''
                    select case when age >= 20 and age <= 30 then '20-30'
                             when age >= 30 and age <= 40 then '30-40'
                             when age >= 40 and age <= 50 then '40-50'
                             else '60以上' end age2,count(*) cnt
                    from(
                        select 2024 - substring(birthday,0,4) age
                        from t1
                    )t2 group by 
                        case when age >= 20 and age <= 30 then '20-30'
                             when age >= 30 and age <= 40 then '30-40'
                             when age >= 40 and age <= 50 then '40-50'
                             else '60以上' end 

                  ''').show()

4.统计每个省份积分最高的前3个人

python 复制代码
from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession.builder \
        .appName("测试") \
        .getOrCreate()

    df = spark.read.option('header',True).csv('data.csv')
    df.createTempView('t1')
    spark.sql("""
                select name,score,provincename,rn
                from(
                    select
                        name,score,provincename,row_number() over(partition by provincename order by score desc) rn
                    from t1 where provincename is not null
                )t2 where rn <= 3
             """).show(150)
    spark.stop()
相关推荐
康康的AI博客20 小时前
AI大模型支持下的企业智能化转型:优化任务分配与文档自动化的最佳实践
大数据·人工智能·自动化
郝学胜-神的一滴20 小时前
贝叶斯之美:从公式到朴素贝叶斯算法的实践之旅
人工智能·python·算法·机器学习·scikit-learn
SQL必知必会20 小时前
SQL 数据分析终极指南
数据库·sql·数据分析
C#程序员一枚20 小时前
大字段查询性能优化终极方案
sql·c#
AC赳赳老秦20 小时前
云原生AI趋势:DeepSeek与云3.0架构协同,提升AI部署性能与可移植性
大数据·前端·人工智能·算法·云原生·架构·deepseek
央链知播20 小时前
证监会:《关于境内资产境外发行资产支持证券代币的监管指引》【第1号公告】
大数据·人工智能·物联网
SQL必知必会20 小时前
SQL 优化技术精要:让查询飞起来
数据库·sql
少云清20 小时前
【安全测试】5_应用服务器安全性测试 _SQL注入和文件上传漏洞
数据库·sql·安全性测试
诚思报告YH20 小时前
普及化专业级3D扫描设备(三角结构光技术)市场洞察:未来六年复合年均增长率(CAGR)为4.6%
大数据·人工智能
好家伙VCC20 小时前
**发散创新:用 Rust构建多智能体系统,让分布式协作更高效**在人工智能快速演进的今天,**多智能体系统(
java·人工智能·分布式·python·rust