【生成式人工智能-八-大型语言模型的能力评估】

语言模型的能力评估

通常情况下我们想到的语言模型能力评估,就是让模型输出答案,然后与标准答案进行比对,可是现实是,这很难评估模型能力,下面就介绍下评估的难度

评估难度来自哪里

输出没办法确定

准备一些标准的corpus,也就是所谓的Benchmark Corpus,输入模型后,比对模型输出,但是对于输出的评分很难界定得分,因为同一个输入本来就可以有两种答案,同一种答案也可以有两种不同的说法,所以这就很难界定输出的好坏。

给出选择题

为了解决上面的问题,你可以给出选择题,也确实有这样的benchmark,那问题解决了么?

仔细想想就知道没那么简单,比如答案是A B C D,那模型万一回复的是a,又或者模型不按照人的思路直接给出答案了呢,这样还是很难解决评分问题。

当然你可以告诉模型只要输出选项,但是我们之前讲过,如果加上限制,很可能模型的重点放在了只输出选项上,而不是模型能力本身,因为之前我们讲过,模型本身就是需要step by step才会讲的更好

本身就没标准答案

比如做摘要,这个本身就没有标准答案,跟答案不同不能认为不对或者不好。当然也有BLEU和ROUGE一些算法,它是计算相同的字数的分数的,但这个分数的评估结果,想想就知道依然不是很理想。

那真的没办法评估了么

评估方法

人力

这个毋庸置疑,目前网站上的模型排名也是人力排名的

用语言模型来评估语言模型

可以把标准答案和语言模型的输出一起给GPT,问它答案是否正确,或者直接问GPT 两个模型的输出哪个更好。曾经有人MT-Bench上用GPT4来衡量回复的好坏。看起来是解决了这个问题,但是这个回复客观么?

语言模型的偏爱

语言模型真的是有偏爱的,比如gpt就特别喜欢长一点的答案。

了解到评估难度之后,我们可以了解下我们评估可以使用的资料集

评估语言模型的数据集

下面是几个常用的评估数据集

到最后一个 Natural Instrucions 任务集已经包含1600多个任务了

有方法和能力之外,出了常见的正确与否,一些其他我们需要评估的能力。

评估模型的不同能力

阅读长文的能力

现在我们越来越希望模型能够记住更长的内容,所以就希望能够测试模型阅读长文的能力,测试模型在看过很长的文章之后还能不能记住它看到的内容。

分别在一篇很长的文章的开头、中间、结尾插入一句话(防止不同模型在对于不同输入中不同位置的关注度带来影响),然后看模型能否回答出来的出来

有人在GPT-4做了测试,它自己号称可以读128k token的内容,但是实际测试发现,小于64K的时候,无论是放在哪里都可以回答出来,但是如果文档真的是到了128K的时候,如果插入的话放在前面,那GPT-4是回答不出来问题的。下面这个图是在GPT上实验结果(纵轴是插入语句的位置,从上往下依次是文章开头到结尾,横轴是输入token长度)

心智测验

测验模型是否具心智能力,看模型是否具备人类的心智。

拿一些心智测验题目,看模型是否具备心智能力,当然这个过程里必须警惕它在之前已经看过类似的资料了。比如上面这个问题,如果仅仅是文字生成,就会输出到去箱子找球,但是真正具备心智的人是会回答篮子。

当然也有这样的测试集,不过目前模型的测试的结果都不是很理想,与人类差距很大

道德性测试

看模型是否会为了自己的目标,违背一些道德,做一些操作,MACHIAVELLI Benchmark就是这样的测试

安全性测试

相关推荐
云边云科技6 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
audyxiao00116 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
Monkey的自我迭代33 分钟前
机器学习总复习
人工智能·机器学习
大千AI助手34 分钟前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
用户51914958484543 分钟前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码1
人工智能·python·音视频
Black_Rock_br1 小时前
本地部署的终极多面手:Qwen2.5-Omni-3B,视频剪、音频混、图像生、文本写全搞定
人工智能·音视频
用什么都重名1 小时前
《GPT-OSS 模型全解析:OpenAI 回归开源的 Mixture-of-Experts 之路》
人工智能·大模型·openai·gpt-oss
CV-杨帆2 小时前
使用LLaMA-Factory的数据集制作流程与训练微调Qwen3及评估
人工智能