论文解读(16)-3D城市理解

下面开始看3D城市方面

这是原文:

3D Question Answering for City Scene Understanding

(3D Question Answering for City Scene Understanding (arxiv.org))

摘要

目前对于3D模态的引入主要还是应用于室内和室外的活动(比如自动驾驶),因此3D辅助城市理解这块领域几乎是一片空白。所以就做了一个3D数据集和一种场景图增强的城市级理解方法(a Scene graph enhanced City-level Understanding method)

1. Intro

先讲了一下应用场景的不同,以前都是比较局部的,现在是针对城市这种宏观的概念

从两方面入手:

1)数据集:(City-3DQA)

包括城市级实例分割、场景语义提取、问答对构建

We realize data collection including City-level Instance Segmentation, Scene Semantic Extraction, and Question-Answer Pair Construction.

表示方式例子:

  • living building - left - business building
  • transportation building - usage - buying tickets

2)方法:a Scene graph enhanced City-level Understanding method (Sg-CityU)

Sg-CityU extracts the vision and language representation from point clouds and questions respectively. And then a city-level scene graph is constructed, which is encoded through graph neural networks

  • 之后看图再详细讲这块
  • city scene understanding
  • 3D multimodal question answering

3. 问题定义

  • 尽量让输出在语义上接近真值
  • 最终用图来表示地理的特征

4. 数据集

1)City-level Instance Segmentation:首先将城市图像进行语义分割

最后分为

  • i代表的是分割后的物体,x,y,z是坐标

2)Scene Semantic Extraction:

接下来,就是spartial information:

在两个物体之间加入位置信息:

然后位置信息应该有八种:: "front", "front-right", "right", "back-right", "front-left", "left", "back-left" and "back"

语义信息:

用这元组来表达

然后涉及五个方面:instance label, building category label, synonym label, location, and usage label

3)Question-Answer Pair Construction

用上述的信息和模版来进行填充:

5. Method

5.1 Multimodal Encoder
  • 多模态的encoder
  • 用的是votenet做的backbone

然后用bert去处理问题的特征

  • 这块是spatial的嵌入
5.2 Fusion
  • 最后是输出

总体感觉挺简单粗暴的,但是在融合方面挺有意思

6. 结果
  • 因为之前没有在city这样的规模上进行类似的任务,所以比较的都是一些通用模型,或者indoor模型
相关推荐
新启航-光学3D测量10 小时前
从 48 小时到 4 小时:三维逆向工程中自动化工具链如何重构扫描建模效率
科技·3d·制造
网安INF12 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
张较瘦_14 小时前
[论文阅读] 软件工程工具 | EVOSCAT可视化工具如何重塑软件演化研究
论文阅读·软件工程
果粒橙_LGC14 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
AustinCyy14 小时前
【论文笔记】Multi-Agent Based Character Simulation for Story Writing
论文阅读
彩旗工作室16 小时前
腾讯混元3D系列开源模型:从工业级到移动端的本地部署
3d·开源·腾讯混元
CG_MAGIC16 小时前
主流 3D 模型格式(FBX/OBJ/DAE/GLTF)材质支持与转换操作指南
3d·渲染·动画·材质·贴图·3d 模型格式·材质支持与转换操作指南
张较瘦_19 小时前
[论文阅读] 人工智能 | 当Hugging Face遇上GitHub:预训练语言模型的跨平台同步难题与解决方案
论文阅读·人工智能·github
dundunmm19 小时前
【论文阅读】SIMBA: single-cell embedding along with features(1)
论文阅读·深度学习·神经网络·embedding·生物信息·单细胞·多组学
计算机科研圈1 天前
ICCV 2025 | 首个3D动作游戏专用VLA模型,打黑神话&只狼超越人类玩家
图像处理·人工智能·3d·黑神话