使用FastAI构建深度学习模型非常方便,尤其是对于快速原型开发和实验。以下是一个使用FastAI构建深度学习模型的完整示例,涵盖数据准备、模型训练和评估。
安装依赖
首先,确保你安装了FastAI库和其他必要的库:
bash
pip install fastai
数据准备
我们以CIFAR-10数据集为例,演示如何准备数据。
python
from fastai.vision.all import *
# 下载并加载CIFAR-10数据集
path = untar_data(URLs.CIFAR)
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))
构建和训练模型
使用FastAI的高层API快速构建和训练模型。这里我们使用ResNet18作为示例模型。
python
# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)
# 训练模型
learn.fine_tune(1)
评估模型
训练完成后,评估模型性能。
python
# 评估模型
learn.validate()
完整示例
综合以上步骤,以下是完整的代码示例:
python
from fastai.vision.all import *
# 下载并加载CIFAR-10数据集
path = untar_data(URLs.CIFAR)
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))
# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)
# 训练模型
learn.fine_tune(1)
# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")
# 预测新数据
# 假设`new_image_path`是新图像的路径
new_image_path = path/'test'/'airplane'/'0001.png'
img = PILImage.create(new_image_path)
pred, pred_idx, probs = learn.predict(img)
print(f"Prediction: {pred}, Probability: {probs[pred_idx]:.4f}")
自定义数据集
如果你有自己的数据集,可以按照以下方式进行数据准备。
假设你的数据集结构如下:
/path/to/your/data
train/
class1/
img1.jpg
img2.jpg
...
class2/
img1.jpg
img2.jpg
...
valid/
class1/
img1.jpg
img2.jpg
...
class2/
img1.jpg
img2.jpg
...
使用FastAI加载自定义数据集:
python
from fastai.vision.all import *
# 定义数据路径
data_path = Path('/path/to/your/data')
# 加载数据
dls = ImageDataLoaders.from_folder(data_path, valid='valid', item_tfms=Resize(224))
# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)
# 训练模型
learn.fine_tune(1)
# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")
自定义模型
如果你需要使用自定义模型,可以按照以下方式定义和训练。
python
from fastai.vision.all import *
# 定义自定义模型
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.fc1 = nn.Linear(32*8*8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载数据
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))
# 创建Learner
learn = Learner(dls, MyModel(), metrics=accuracy, loss_func=CrossEntropyLossFlat())
# 训练模型
learn.fit_one_cycle(5)
# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")
使用FastAI,快速构建、训练和评估深度学习模型变得非常简单。无论是使用预训练模型还是自定义模型,FastAI都提供了强大的工具和灵活的API来满足你的需求。