大模型系统安全风险与防护策略

当前LLM安全现状从2023年开始,大语言模型(LLM)掀起了自然语言处理领域的一场重大变革。模型参数和预训练语料库的扩大,赋予LLM在各类NLP任务中卓越的能力,但它们有时也可能违背人类的价值观和偏好。精心设计的对抗性提示可以引发LLM产生有害响应。即使没有遭受对抗性攻击,当前的LLM也可能生成不真实、有毒、有偏见甚至非法的内容。这些不良内容可能被滥用,产生不良的社会影响。LLM系统的关键组成模块包括:用于接收用户请求的输入模块,在大量数据集上训练得到的语言模型模块,用于开发和部署的工具链模块,以及用于导出LLM生成内容的输出模块。本文围绕这些关键系统模块梳理大模型安全风险与相关防御策略。下图就是从系统视角出发,从提示输入、语言模型、工具、输出和风险评估五个方面对LLM整个系统的风险性构造的威胁建模。

LLM系统安全风险分类体系在实际应用中,用户通常通过LLM系统与语言模型进行交互。本章节主要介绍关键模块,以及与这些模块相关的风险。一个 LLM 系统涉及一系列数据、算法和实用程序,它们可以划分为 LLM 系统的不同模块。其中最主要的模块,包括用于接收提示的输入模块(数据请求接收方)、在大量数据集上训练的语言模型、用于开发和部署的工具链模块,以及用于输出 LLM 生成的内容的输出模块。输入模块。输入模块由一个输入保护装置来接收和预处理输入提示。具体来说,该模块通常包含一个接收器,等待用户输入请求,并采用基于算法的策略来过滤或限制请求。语言模型模块。语言模型是整个 LLM 系统的基础。从本质上讲,该模块包括大量训练数据和使用这些数据训练的最新语言模型。工具链模块。工具链模块包含用于开发和部署 LLM 系统的实用程序。具体而言,该模块包括软件开发工具、硬件平台和外部工具。输出模块。输出模块返回 LLM 系统的最终响应。一般来说,该模块附有输出保障措施,以修订 LLM 生成的内容,使其符合伦理健全性和合理性。

2.1 大模型输入模块的风险问题输入模块是 LLM 系统在用户与机器对话过程中向用户打开的初始窗口。通过该模块,用户可以向系统输入指令,查询所需的答案。然而,当这些输入提示包含有害内容时,LLM 系统就可能面临生成不良内容的风险。在下文中,我们将恶意输入提示分为(1)不适合工作的提示和(2)对抗性提示。图3显示了这两类提示的示例。

相关推荐
吉吉6111 小时前
浅谈文件包含之伪协议
安全·web安全
吗喽15434518811 小时前
渗透高级第一次作业(笔记整理)
笔记·安全·网络安全
Jerry_Gao92112 小时前
【成长笔记】【web安全】深入Web安全与PHP底层:四天实战课程笔记
笔记·安全·web安全·php·漏洞
遗悲风12 小时前
PHP伪协议全面解析:原理、常用场景、攻防实战与安全防护
android·安全·php
弥生赞歌13 小时前
网安学习第一章(安全事件、安全厂商和安全产品)
安全
吃不吃早饭13 小时前
深入浅出:HTTPS 安全机制 + PHP 文件包含与伪协议全解析
安全·https·php
摘星编程13 小时前
React Native for OpenHarmony 实战:SecureStorage 安全存储详解
安全·react native·react.js
小北方城市网14 小时前
SpringBoot 集成 MyBatis-Plus 实战(高效 CRUD 与复杂查询):简化数据库操作
java·数据库·人工智能·spring boot·后端·安全·mybatis
w***765515 小时前
临时文件自动化管理:高效安全新方案
运维·安全·自动化
阿里-于怀15 小时前
Nacos 安全护栏:MCP、Agent、配置全维防护,重塑 AI Registry 安全边界
安全·ai·nacos·agent