Ollama 可以玩 GLM4和CodeGeeX4了

最近这一两周看到不少互联网公司都已经开始秋招提前批了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结链接如下:

《大模型面试宝典》(2024版) 发布!

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们


GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中, GLM-4-9B 在各项能力上均表现出卓越的能力。

CodeGeeX4-ALL-9B 是最新的 CodeGeeX4 系列模型的开源版本。该模型是在 GLM-4-9B 基础上持续训练的多语言代码生成模型,显著提升了代码生成能力。

GGUF模型链接:

https://www.modelscope.cn/models/LLM-Research/codegeex4-all-9b-GGUF

环境配置与安装

GGUF模型下载:

glm-4-9b-chat-GGUF

bash 复制代码
modelscope download --model=LLM-Research/glm-4-9b-chat-GGUF --local_dir . glm-4-9b-chat.Q5_K.gguf

codegeex4-all-9b-GGUF:

bash 复制代码
modelscope download --model=LLM-Research/codegeex4-all-9b-GGUF --local_dir . codegeex4-all-9b-Q5_K_M.gguf

使用Ollama推理

Ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供了一个简单而高效的接口,用于创建、运行和管理这些模型,同时还提供了一个丰富的预构建模型库,可以轻松集成到各种应用程序中。Ollama支持多种操作系统,包括macOS、Windows、Linux以及Docker,适用性广泛。通过Ollama,用户可以方便地部署和运行GLM-4-9B 等开源的大语言模型。此外,Ollama还提供了包括网页、桌面应用和终端界面在内的多种互动方式,方便用户使用和管理这些模型。

本次我们在魔搭社区免费Notebook的CPU环境体验:

Linux环境使用

Liunx用户可使用魔搭镜像环境安装【推荐】

bash 复制代码
modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh

启动Ollama服务

bash 复制代码
ollama serve

创建ModelFile

复制模型路径,创建名为"ModelFile"的meta文件,内容如下:

bash 复制代码
FROM /mnt/workspace/glm-4-9b-chat.Q5_K.gguf
#FROM /mnt/workspace/codegeex4-all-9b-Q5_K_M.gguf

# set parameters
PARAMETER stop "<|system|>"
PARAMETER stop "<|user|>"
PARAMETER stop "<|assistant|>"

TEMPLATE """[gMASK]<sop>{{ if .System }}<|system|>
{{ .System }}{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}{{ end }}<|assistant|>
{{ .Response }}"""

创建自定义模型

使用ollama create命令创建自定义模型

bash 复制代码
ollama create myglm4 --file ModelFile

运行模型:

bash 复制代码
ollama run myglm4

技术交流&资料

用通俗易懂方式讲解系列

相关推荐
薛定e的猫咪6 分钟前
【论文精读】ICLR 2023 --- 作为离线强化学习强表达能力策略类的扩散策略
人工智能·深度学习·机器学习·stable diffusion
连线Insight14 分钟前
当考公遇上AI,粉笔能吸引用户付费吗?
人工智能
●VON19 分钟前
开源 vs 商业:主流AI生态概览——从PyTorch到OpenAI的技术格局之争
人工智能·pytorch·开源
乾元1 小时前
AI 在网络工程中的 12 个高频场景深度实战(Cisco / Huawei 双体系)
人工智能
子午2 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Dev7z2 小时前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
Mxsoft6192 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian3 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花3 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午3 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习