机器学习笔记:编码器与解码器

目录

介绍

组成结构

代码实现

编码器

解码器

合并编码器-解码器

思考


介绍

在机器翻译中,输入的序列与输出的序列经常是长度不相等的序列,此时,像自然语言处理这种直接使用循环神经网络或是门控循环单元的方法就行不通了。因此,我们引入一个新的结构,称之为"编码器-解码器"(Encoder-Decoder),通过这种结构,来实现输入输出长度不均等的问题。

在这一节内容,只介绍这一结构的总体架构,不进行具体实践。

组成结构

编码器-解码器结构图

如图所示,本结构主要由一个编码器和一个解码器组成,首先输入源字符串序列,通过编码器进行编码,输出一个状态。随后,解码器对状态进行解码,根据状态进行输出,输出结果即为翻译所得目标语言字符串。解码的这个过程还需要其他输入,比如源字符串序列的有效长度(valid_length)。

代码实现

编码器和解码器的代码都由抽象类进行实现。

编码器

编码器类的前向计算为抽象方法,返回NotImplementedError。具体使用时需要重写该方法。

python 复制代码
from mxnet.gluon import nn

class Encoder(nn.Block):
    def __init__(self, **kwargs):
        super(Encoder, self).__init__(**kwargs)

    def forward(self, X, *args):
        raise NotImplementedError

解码器

解码器有前向计算和状态两个抽象函数。init_state()用于将编码器的输出(enc_outputs)转换为编码后的状态。*args表明其可能需要额外的输入,这有可能是输入序列的有效长度(valid_length)。

python 复制代码
class Decoder(nn.Block):
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)

    def init_state(self, enc_outputs, *args):
        raise NotImplementedError

    def forward(self, X, state):
        raise NotImplementedError

合并编码器-解码器

显然,还是一个抽象类,只不过将前两个代码给合并了。

总而言之,"编码器-解码器"架构包含了一个编码器和一个解码器, 并且还拥有可选的额外的参数。 在前向传播中,编码器的输出用于生成编码状态, 这个状态又被解码器作为其输入的一部分。

python 复制代码
#@save
class EncoderDecoder(nn.Block):

    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, enc_X, dec_X, *args):
        enc_outputs = self.encoder(enc_X, *args)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)

思考

  1. 假设我们使用神经网络来实现"编码器-解码器"架构,那么编码器和解码器必须是同一类型的神经网络吗?

  2. 除了机器翻译,还有其它可以适用于"编码器-解码器"架构的应用吗?

相关推荐
千澜空19 分钟前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
学习前端的小z21 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
斯凯利.瑞恩26 分钟前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
yannan201903131 小时前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法1 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR1 小时前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
MarkHD1 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
打羽毛球吗️1 小时前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁1 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev1 小时前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理