【机器学习sklearn实战】逻辑回归(Logistic regression)

官网教程:logistic-regression --- scikit-learn 1.5.1 documentation

一 导入包

python 复制代码
# 导入包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report

二 数据加载

python 复制代码
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

三 数据划分

python 复制代码
# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

四 模型创建

python 复制代码
# 创建逻辑回归模型实例
logistic_regression = LogisticRegression(max_iter=10, random_state=42)

五 模型训练

python 复制代码
# 预测测试集上的标签
y_pred = logistic_regression.predict(X_test)

六 模型评估

python 复制代码
# 输出预测准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.4f}")

# 输出详细的分类报告
report = classification_report(y_test, y_pred)
print("Classification Report:")
print(report)

# 查看模型系数
coefficients = logistic_regression.coef_
print("Coefficients:")
print(coefficients)

# 查看截距
intercept = logistic_regression.intercept_
print("Intercept:")
print(intercept)
相关推荐
空白到白几秒前
机器学习-聚类
人工智能·算法·机器学习·聚类
zzywxc7871 小时前
AI在金融、医疗、教育、制造业等领域的落地案例
人工智能·机器学习·金融·prompt·流程图
非门由也2 小时前
《sklearn机器学习——回归指标2》
机器学习·回归·sklearn
Learn Beyond Limits2 小时前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
数据爬坡ing3 小时前
从挑西瓜到树回归:用生活智慧理解机器学习算法
数据结构·深度学习·算法·决策树·机器学习
m0_677034353 小时前
机器学习-异常检测
人工智能·深度学习·机器学习
Christo36 小时前
TFS-2003《A Contribution to Convergence Theory of Fuzzy c-Means and Derivatives》
人工智能·算法·机器学习
Yingjun Mo6 小时前
1. 统计推断-ALMOND收敛性分析
人工智能·算法·机器学习
Loving_enjoy6 小时前
YOLOv11改进大全:从卷积层到检测头,全方位提升目标检测性能
经验分享·机器学习·迁移学习·facebook
天上的光7 小时前
大模型——剪枝、量化、蒸馏、二值化
算法·机器学习·剪枝