大型、复杂、逼真的安全服和安全帽检测:数据集和方法

智能升级工地安全:SFCHD数据集与SCALE模块介绍

在人工智能(AI)技术飞速发展的今天,其在建筑工地安全领域的应用正逐渐展现出巨大潜力。尤其是高风险行业如化工厂的施工现场,对工人的保护措施要求极为严格。个人防护装备(PPE),包括安全帽和服装,是保障工人安全的重要环节。然而,在复杂多变的光照条件下实时监控这些装备的使用情况一直是个难题。

SFCHD数据集:安全研究的新里程碑

华中科技大学团队在这一领域取得了重要进展,推出了安全服和安全帽检测(SFCHD)数据集。这是一个大型、复杂且真实的数据集,包含了12,373张图片,涵盖了7个类别,共计50,552个标注实例。这些图片均来源于真实的建筑工地,确保了数据的实用性和真实性。

SFCHD数据集的特点在于其丰富性和多样性。我们收集了不同场景下的图像,包括不同的光照条件,从而为训练和测试AI模型提供了极具挑战性的环境。

SCALE模块:低光照条件下的新突破

除了SFCHD数据集,我们还开发了一个名为SCALE(Spatial and Channel Attention-based Low-Light Enhancement)的低光照增强模块。这个即插即用模块专为现有目标检测工作流程设计,能够在低光照条件下显著提升图像质量。

SCALE模块通过空间注意力路径(SAP)和通道注意力路径(CAP)两个并行路径工作。SAP专注于从图像的关键区域提取特征,而CAP则评估不同通道的重要性,学习特定于通道的特征信息。这种双重方法使SCALE能够在低光照情况下显著提高目标检测器的性能。

AI在工业安全中的应用前景

我们在SFCHD数据集上对SCALE模块进行了实验,并将其与现有的目标检测算法结合使用,实验结果表明,在低光照条件下,目标检测的准确性得到了显著提升。

这些成果的实际应用意义重大。通过SFCHD数据集和SCALE模块,我们能够开发出能够实时监控建筑工地安全装备使用的AI系统,确保工人的安全。

展望未来

展望未来,我们计划将SFCHD数据集应用于更广泛的计算机视觉任务,如实例分割和图像分类等。同时,我们也将继续探索创新方法,以有效应对工业数据集中的复杂背景噪声等挑战,为工业环境中的计算机视觉研究提供更强的支持。

邀请您共同推动AI在安全领域的进步

SFCHD数据集和SCALE模块的推出,标志着我们在利用AI提升建筑工地安全方面迈出了重要的一步。我们诚邀研究人员、从业者和AI爱好者探索我们的工作,共同推动工业安全领域的AI技术发展。我们的代码和数据集已在 https://github.com/lijfrank-open/SFCHD-SCALE 上公开,欢迎访问和使用。

您的工业安全之旅,从这里开始。

本文基于华中科技大学Fusheng Yu、Jiang Li、Xiaoping Wang、Shaojin Wu、Junjie Zhang和Zhigang Zeng教授团队的研究论文《Large, Complex, and Realistic Safety Clothing and Helmet Detection: Dataset and Method》。

相关推荐
CountingStars6192 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen10 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝15 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
黑客Jack15 分钟前
防御 XSS 的七条原则
安全·web安全·xss
橙子小哥的代码世界23 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
云云3211 小时前
怎么通过亚矩阵云手机实现营销?
大数据·服务器·安全·智能手机·矩阵
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
神一样的老师2 小时前
面向高精度网络的时间同步安全管理架构
网络·安全·架构
小陈phd2 小时前
OpenCV学习——图像融合
opencv·计算机视觉·cv
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai