「数组」随机快速选择 / LeetCode LCR 076(C++)

前置知识

在本篇文章之前,你应该先掌握快速排序的基本技巧,详见:「数组」快速排序 / 随机值优化|小区间插入优化(C++)

概述

LeetCode LCR 076是这么一道题:

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 :

复制代码
输入: [3,2,1,5,6,4] 和 k = 2输出: 5

这样的题目可以直接通过快速选择进行完全排序,但时间复杂度是O(nlogn)。如果我们要求必须在O(n)时间内得到结果呢?随机数优化的快速排序变体:随机快速选择能完成这个工作。

思路

在快速选择中,我们不得不进行全部的递归与回溯过程来实现数组的完全排序。

但是在只要求某个元素位置正确时,我们注意到:

cpp 复制代码
void quick_sort(int arr[], int l,int r) {
	if (r-l<=1)return ;
	int pos = partition(arr, l, r);
	quick_sort(arr, l, pos);
	quick_sort(arr, pos + 1, r);
}

两个子区间排序的其中一个是不必要的,并且如果已经安放了正确的元素位置,以后的所有递归都是不必要的。

算法过程

那么快速选择过程就可以进行对应的优化。

这就意味着:

①我们只需要判断parition分区函数返回的pos与期望位置之间的关系,并转发给对应的子排序

②当got_ans==true时,我们可以直接返回来实现剪枝。

cpp 复制代码
void quick_select(vector<int>& nums,int l,int r,int& k,const int& len,bool& got_ans){
        if(r-l<1||got_ans)return ;
        int pos=partition(nums,l,r);
        if(pos==len-k){got_ans=true;return;}
        if(pos>len-k)quick_select(nums,l,pos,k,len,got_ans);
        if(pos<len-k)quick_select(nums,pos+1,r,k,len,got_ans);
    }

partition函数仍然保持原状:

cpp 复制代码
int partition(vector<int>& nums,int l,int r){
        int pivot=l+mt()%(r-l);
        swap(nums[pivot],nums[r-1]);
        int i,j;
        for(i=l,j=l;j<r;j++)if(nums[j]<=nums[r-1])swap(nums[i++],nums[j]);
        return i-1;
    }

由于此算法是随机快速排序的特化体,故为随机快速选择。

复杂度

时间复杂度:O(n)

空间复杂度:O(logn)

复杂度分析

时间分析:

在理想情况下,每次都转发给了排序范围折半的子函数。

总用时为T(n),两个T(n/2)为下一级的总时间,n为本次分区所用时间,

T(n)=T(n/2)+n

=T(n/4)+n/2+n

...

=T(1)+n(1-1/2^n)/(1-1/2)

=1+2n+n/2^(n-1)

省去小量,得到O(n)


空间分析:

与快速排序相同,每一级子函数都使用了常量空间,因此空间复杂度是logn级别的。

Code

cpp 复制代码
class Solution {
private:
    mt19937 mt;
public:
    int partition(vector<int>& nums,int l,int r){
        int pivot=l+mt()%(r-l);
        swap(nums[pivot],nums[r-1]);
        int i,j;
        for(i=l,j=l;j<r;j++)if(nums[j]<=nums[r-1])swap(nums[i++],nums[j]);
        return i-1;
    }
    void quick_select(vector<int>& nums,int l,int r,int& k,const int& len,bool& got_ans){
        if(r-l<1||got_ans)return ;
        int pos=partition(nums,l,r);
        if(pos==len-k){got_ans=true;return;}
        if(pos>len-k)quick_select(nums,l,pos,k,len,got_ans);
        if(pos<len-k)quick_select(nums,pos+1,r,k,len,got_ans);
    }
    int findKthLargest(vector<int>& nums, int k) {
        bool got_ans=false;
        const int len=nums.size();
        quick_select(nums,0,len,k,len,got_ans);
        return nums[len-k];
    }
};
相关推荐
呆瑜nuage23 分钟前
C++之红黑树
c++
亮剑20181 小时前
第2节:程序逻辑与控制流——让程序“思考”
开发语言·c++·人工智能
敲代码的瓦龙1 小时前
操作系统?进程!!!
linux·c++·操作系统
TiAmo zhang2 小时前
现代C++的AI革命:C++20/C++23核心特性解析与实战应用
c++·人工智能·c++20
黑屋里的马2 小时前
java的设计模式之桥接模式(Bridge)
java·算法·桥接模式
z187461030032 小时前
list(带头双向循环链表)
数据结构·c++·链表
sin_hielo2 小时前
leetcode 1611
算法·leetcode
李小白杂货铺2 小时前
识别和破除信息茧房
算法·信息茧房·识别信息茧房·破除信息茧房·算法推荐型茧房·观点过滤型茧房·茧房
来荔枝一大筐3 小时前
C++ LeetCode 力扣刷题 541. 反转字符串 II
c++·算法·leetcode
报错小能手3 小时前
C++笔记——STL list
c++·笔记