「数组」随机快速选择 / LeetCode LCR 076(C++)

前置知识

在本篇文章之前,你应该先掌握快速排序的基本技巧,详见:「数组」快速排序 / 随机值优化|小区间插入优化(C++)

概述

LeetCode LCR 076是这么一道题:

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 :

复制代码
输入: [3,2,1,5,6,4] 和 k = 2输出: 5

这样的题目可以直接通过快速选择进行完全排序,但时间复杂度是O(nlogn)。如果我们要求必须在O(n)时间内得到结果呢?随机数优化的快速排序变体:随机快速选择能完成这个工作。

思路

在快速选择中,我们不得不进行全部的递归与回溯过程来实现数组的完全排序。

但是在只要求某个元素位置正确时,我们注意到:

cpp 复制代码
void quick_sort(int arr[], int l,int r) {
	if (r-l<=1)return ;
	int pos = partition(arr, l, r);
	quick_sort(arr, l, pos);
	quick_sort(arr, pos + 1, r);
}

两个子区间排序的其中一个是不必要的,并且如果已经安放了正确的元素位置,以后的所有递归都是不必要的。

算法过程

那么快速选择过程就可以进行对应的优化。

这就意味着:

①我们只需要判断parition分区函数返回的pos与期望位置之间的关系,并转发给对应的子排序

②当got_ans==true时,我们可以直接返回来实现剪枝。

cpp 复制代码
void quick_select(vector<int>& nums,int l,int r,int& k,const int& len,bool& got_ans){
        if(r-l<1||got_ans)return ;
        int pos=partition(nums,l,r);
        if(pos==len-k){got_ans=true;return;}
        if(pos>len-k)quick_select(nums,l,pos,k,len,got_ans);
        if(pos<len-k)quick_select(nums,pos+1,r,k,len,got_ans);
    }

partition函数仍然保持原状:

cpp 复制代码
int partition(vector<int>& nums,int l,int r){
        int pivot=l+mt()%(r-l);
        swap(nums[pivot],nums[r-1]);
        int i,j;
        for(i=l,j=l;j<r;j++)if(nums[j]<=nums[r-1])swap(nums[i++],nums[j]);
        return i-1;
    }

由于此算法是随机快速排序的特化体,故为随机快速选择。

复杂度

时间复杂度:O(n)

空间复杂度:O(logn)

复杂度分析

时间分析:

在理想情况下,每次都转发给了排序范围折半的子函数。

总用时为T(n),两个T(n/2)为下一级的总时间,n为本次分区所用时间,

T(n)=T(n/2)+n

=T(n/4)+n/2+n

...

=T(1)+n(1-1/2^n)/(1-1/2)

=1+2n+n/2^(n-1)

省去小量,得到O(n)


空间分析:

与快速排序相同,每一级子函数都使用了常量空间,因此空间复杂度是logn级别的。

Code

cpp 复制代码
class Solution {
private:
    mt19937 mt;
public:
    int partition(vector<int>& nums,int l,int r){
        int pivot=l+mt()%(r-l);
        swap(nums[pivot],nums[r-1]);
        int i,j;
        for(i=l,j=l;j<r;j++)if(nums[j]<=nums[r-1])swap(nums[i++],nums[j]);
        return i-1;
    }
    void quick_select(vector<int>& nums,int l,int r,int& k,const int& len,bool& got_ans){
        if(r-l<1||got_ans)return ;
        int pos=partition(nums,l,r);
        if(pos==len-k){got_ans=true;return;}
        if(pos>len-k)quick_select(nums,l,pos,k,len,got_ans);
        if(pos<len-k)quick_select(nums,pos+1,r,k,len,got_ans);
    }
    int findKthLargest(vector<int>& nums, int k) {
        bool got_ans=false;
        const int len=nums.size();
        quick_select(nums,0,len,k,len,got_ans);
        return nums[len-k];
    }
};
相关推荐
知来者逆16 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
阿让啊21 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
এ᭄画画的北北21 分钟前
力扣-160.相交链表
算法·leetcode·链表
草莓啵啵~1 小时前
搜索二叉树-key的搜索模型
数据结构·c++
共享家95271 小时前
深入理解C++ 中的list容器
c++
孞㐑¥1 小时前
C++11介绍
开发语言·c++·经验分享·笔记
云小逸1 小时前
【QQMusic项目界面开发复习笔记】第二章
c++·qt
李匠20241 小时前
C++ RPC以及cmake
网络·c++·网络协议·rpc
爱研究的小陈1 小时前
Day 3:数学基础回顾——线性代数与概率论在AI中的核心作用
算法
渭雨轻尘_学习计算机ing1 小时前
二叉树的最大宽度计算
算法·面试