前面我们得知YOLOv8
不但可以实现目标检测任务,还包揽了分类、分割、姿态估计等计算机视觉任务。在上一篇博文中,博主已经介绍了YOLOv8
如何实现分类,在这篇博文里,博主将介绍其如何将实例分割给收入囊中。
YOLOv8实例分割架构图
如下图所示,YOLOv8
采用了一种分割头与检测头相结合的方式来进行实例分割,在这个过程中,其会输出目标检测框与实例分割蒙版。
(先前博主以为这个是语义分割的,但后经人指正才发觉是实例分割,这也同时解答了我一些疑惑)
输出结果图像如下:
经典语义分割模型结构
为了让我们更好的理解语义分割模型,我们以最经典的语义分割模型UNet
为例,可以看到其最终的结果要与原图像大小相同,但最终的维度(n)
会有差别,这与我们确定使用的mask
的数量有关。
YOLOv8实例分割模型结构
YOLOv8的实例分割YOLOv8`的目标检测模型结构即为接近,区别在于在最后的目标检测头基础上添加了实例分割头,同时其最终的实例分割头也是具有三种尺度的:
python
[[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
下图中对各个模块进行了编号,大家可以与yaml
的模型文件进行对照
python
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
s: [0.33, 0.50, 1024]
m: [0.67, 0.75, 768]
l: [1.00, 1.00, 512]
x: [1.00, 1.25, 512]
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
YOLOv8检测头(可忽略)
那么我们看下这个分割头到底是如何定义的,分割头继承了检测头:
检测头代码如下:我们可以看到ultralytics
更新了检测头(加入了YOLOv10
,博主这里将该方法删掉了,因为用不到),其创新点为混合匹配机制,故在检测头中多出了forward_end2end
:
python
class Detect(nn.Module):
"""YOLOv8 Detect head for detection models."""
dynamic = False # force grid reconstruction
export = False # export mode
end2end = False # end2end
max_det = 300 # max_det
shape = None
anchors = torch.empty(0) # init
strides = torch.empty(0) # init
def __init__(self, nc=80, ch=()):
"""Initializes the YOLOv8 detection layer with specified number of classes and channels."""
super().__init__()
self.nc = nc # number of classes
self.nl = len(ch) # number of detection layers
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
self.no = nc + self.reg_max * 4 # number of outputs per anchor
self.stride = torch.zeros(self.nl) # strides computed during build
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
)
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
if self.end2end:
self.one2one_cv2 = copy.deepcopy(self.cv2)
self.one2one_cv3 = copy.deepcopy(self.cv3)
def forward(self, x):
"""Concatenates and returns predicted bounding boxes and class probabilities."""
if self.end2end:
return self.forward_end2end(x)
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
if self.training: # Training path
return x
y = self._inference(x)
return y if self.export else (y, x)
y = self._inference(one2one)
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
return y if self.export else (y, {"one2many": x, "one2one": one2one})
def _inference(self, x):
"""Decode predicted bounding boxes and class probabilities based on multiple-level feature maps."""
# Inference path
shape = x[0].shape # BCHW
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
if self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape
if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}: # avoid TF FlexSplitV ops
box = x_cat[:, : self.reg_max * 4]
cls = x_cat[:, self.reg_max * 4 :]
else:
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
if self.export and self.format in {"tflite", "edgetpu"}:
# Precompute normalization factor to increase numerical stability
# See https://github.com/ultralytics/ultralytics/issues/7371
grid_h = shape[2]
grid_w = shape[3]
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
norm = self.strides / (self.stride[0] * grid_size)
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
else:
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
return torch.cat((dbox, cls.sigmoid()), 1)
YOLOv8分割头
分割头代码如下:
python
class Segment(Detect):
"""YOLOv8 Segment head for segmentation models."""
def __init__(self, nc=80, nm=32, npr=256, ch=()):
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
super().__init__(nc, ch)
self.nm = nm # number of masks
self.npr = npr # number of protos
self.proto = Proto(ch[0], self.npr, self.nm) # protos
c4 = max(ch[0] // 4, self.nm)
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
def forward(self, x):
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
p = self.proto(x[0]) # mask protos
bs = p.shape[0] # batch size
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
x = Detect.forward(self, x)
if self.training:
return x, mc, p
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
输入到分割头的图像存储在list
中,共有三个不同尺度,这与YOLOv8
目标检测是相同的
上述第一个操作便是Proto
操作 ,传入的是第一尺度的输出特征图,Proto
的功能是针对x[0]
进行卷积,将原来80x80大小的feature通过上采样变为160x160,这个图像是基础蒙版(mask)。
python
p = self.proto(x[0])
python
Proto(
(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(upsample): ConvTranspose2d(64, 64, kernel_size=(2, 2), stride=(2, 2))
(cv2): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(cv3): Conv(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(act): SiLU(inplace=True)
)
)
随后将x输入到cv4
模块(期内包含3个模块组成))(即图像中的三个不同尺度的操作),cv4结构如下:
python
ModuleList(
(0): Sequential(
(0): Conv(
(conv): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #CBS模块
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) #CBS模块
(act): SiLU(inplace=True)
)
(2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1)) #用于通道维度转换,Conv2d
)
(1): Sequential(
(0): Conv(
(conv): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
)
(2): Sequential(
(0): Conv(
(conv): Conv2d(256, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
)
)
其过程如下图所示:
得到的即为mask
随后进入检测的前向传播过程,因为YOLOv8
本身就是做的检测,因此这个结果还是要进入检测头:
python
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
cv2
中包含三个模块,最终的输出大小不变,通道数均为64
,即为(64,80,80)(64,40,40)(64,20,20)
python
ModuleList(
(0): Sequential(
(0): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(1): Sequential(
(0): Conv(
(conv): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
(2): Sequential(
(0): Conv(
(conv): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
)
)
cv3
中也是三个模块,图像大小依旧不变,通道维度变为80
,即(80,80,80)(80,40,40)(80,20,20)
python
ModuleList(
(0): Sequential(
(0): Conv(
(conv): Conv2d(64, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))
)
(1): Sequential(
(0): Conv(
(conv): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))
)
(2): Sequential(
(0): Conv(
(conv): Conv2d(256, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(1): Conv(
(conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(act): SiLU(inplace=True)
)
(2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))
)
)
最终将其使用torch.ca
t进行拼接,得到(144,80,80)(144,40,40)(144,20,20)
随后便是推理的后处理过程,即对输出的这三个尺度的图像进行解码:
self.no = nc + self.reg_max * 4
,其中reg_max
是根据YOLOv8
不同模型大小设定的,即 scale 4/8/12/16/20 for n/s/m/l/x)
,此处reg_max=16
python
def _inference(self, x):
"""Decode predicted bounding boxes and class probabilities based on multiple-level feature maps."""
# Inference path
shape = x[0].shape # BCHW (144,80,80)
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)#(1,144,8400)8400=80*80+40*40+20*20
if self.dynamic or self.shape != shape:
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
self.shape = shape #
if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}: # avoid TF FlexSplitV ops#不执行
box = x_cat[:, : self.reg_max * 4]
cls = x_cat[:, self.reg_max * 4 :]
else:
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
if self.export and self.format in {"tflite", "edgetpu"}:#不执行
# Precompute normalization factor to increase numerical stability
# See https://github.com/ultralytics/ultralytics/issues/7371
grid_h = shape[2]
grid_w = shape[3]
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
norm = self.strides / (self.stride[0] * grid_size)
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
else:
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
return torch.cat((dbox, cls.sigmoid()), 1)
self.anchors为torch.Size([2, 8400])
, self.strides为torch.Size([1, 8400])
shape
为torch.Size([1, 144, 80, 80])
144=64+80,这个64是预测的box的值,最后还要进行转换
根据x_cat
进行拆分,得到预测的box
与cls
,box
即为(1,64,8400)
,cls
为(1,80,8400)
随后通过DEL
模块对box
进行分解:
python
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
得到的box
即为(1,4,8400)
DE
L中的Conv2d
没有梯度,即参数不会更新,这个模块作用便是将64
分解为4*16
,进而得到4*1
最后将 dbox
和 cls
(类别)返回
python
return torch.cat((dbox, cls.sigmoid()), 1)
其维度为(84,8400)
,84=80+4
,8400
代表预测的目标个数
最终返回数据:
python
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
其中mc
为(1,32,8400)x是一个元组,x[0]为(1,84,8400)x[1】为列表,包含(1,144,80,80)(1,144,40,40),(1,144,20,20),p为(1,32,160,160)
p为基础蒙版
返回的数据:
其中(1,32,8400)
即为预测的mask
非极大值抑制
在推理过程中,博主使用的图像大小为(3,480,640)
,所有最后得到的数据维度为(1,116,6300)
其中,116=84(80+4)+32
,这是因为YOLOv8
中不仅要完成语义分割还要实现目标检测,其中(1,32,6300)
是用于语义分割的。
而6300=60*80+30*40+15*20
下面的分解代码证实了这一点,即mask
的数量(nm
)为116-80-4=32
,mask
开始坐标为80+4=84
python
nm = prediction.shape[1] - nc - 4 # number of masks
mi = 4 + nc
设定输出:
python
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
得到的output为38
个值,其中38=4+class_score+class+32
(保存检测与分割结果)
随后筛选出的大于阈值的类别,得到36
个,即(1,36,116)
,这里的36
指的是符合的个数,是从6300
中筛选出的。
将box
,类别 以及分割mask
分开:
python
box, cls, mask = x.split((4, nc, nm), 1)
box
为(36,4)
,cls
为(36,80)
,mask
为 (36,32)
随后再从类别中选出最大的
python
conf, j = cls.max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
得到的conf
为分值,j
为坐标(代表类别),维度均为(36,1)
,并将这些数据再次拼接到一起,得到(36,38)
,其中36
为目标个数,38
为4+1+1+32
,即 box+conf+cls_id+mask
python
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes,max_wh是定义的,值为7860
scores = x[:, 4] # scores
if rotated:
boxes = torch.cat((x[:, :2] + c, x[:, 2:4], x[:, -1:]), dim=-1) # xywhr
i = nms_rotated(boxes, scores, iou_thres)
else:#执行这个,对box进行非极大值抑制,这个是调用了torch的包
boxes = x[:, :4] + c # boxes (offset by class)
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
i = i[:max_det]#max_det=300,即最多只能预测300个目标
output[xi] = x[i]
返回的 i
为 tensor([20, 24, 3, 32, 34], device='cuda:0')
,这里给出的i
是36
个中经过筛选后的检测框编号,最终将x中的目标筛选出存储到output
中,可以看到output
是一个列表,存放的是每个batch
的结果,由于在预测时只输入一张图像,故里面只有一个数据,筛选出的结果为(5,38)
,即有5
个目标。
后处理过程
那么,这个mask
要如何使用呢。我们接下来看一下其后处理过程
python
def postprocess(self, preds, img, orig_imgs):
后处理过程中传入的参数为preds即预测的结果,即YOLOv8分割头输出的结果
img是输入的图像(归一化后的),orig_img是原始图像
在后处理过程的刚开始,便是利用非极大值抑制来筛选出部分数据:
python
p = ops.non_max_suppression(
preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes,
)
得到的结果 p
即为(5,38)
判断preds[1]
是否是tuple
类型,是,则为preds[1][-1]
,即为(1,32,120,160)
python
proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1]
随后进行下面的循环(预测只有一张图像,故只有一轮)
python
for i, (pred, orig_img, img_path) in enumerate(zip(p, orig_imgs, self.batch[0])):
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:#执行的是这个分支
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results
我们可以看到mask
的处理结果:
python
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)
process_mask
方法是如何处理的呢?
我们先看一下其传入的参数,proto
为(1,32,120,160)
,pred
为(5,38)
,取从6
到38
,即只是mask
的32
维数据,即为(5,32)
,同时还有bbox
为 (5,4)
,img.shape[2:]
为宽高
python
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
c, mh, mw = protos.shape # CHW 32 120 160
ih, iw = shape #480,640
masks = (masks_in @ protos.float().view(c, -1)).view(-1, mh, mw) # CHW (5,120,160)
width_ratio = mw / iw #0.25
height_ratio = mh / ih#0.25
downsampled_bboxes = bboxes.clone()#克隆
downsampled_bboxes[:, 0] *= width_ratio #对其进行缩放
downsampled_bboxes[:, 2] *= width_ratio
downsampled_bboxes[:, 3] *= height_ratio
downsampled_bboxes[:, 1] *= height_ratio
masks = crop_mask(masks, downsampled_bboxes) # CHW
if upsample:
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
return masks.gt_(0.0)
python
bboxs原始值:
tensor([[2.3550e+02, 1.1798e+02, 3.6113e+02, 3.4263e+02],
[2.7596e-01, 1.5049e+02, 1.8605e+02, 4.1289e+02],
[5.9170e+02, 1.7436e+02, 6.3966e+02, 3.0410e+02],
[9.4319e+00, 1.5594e+02, 4.7882e+02, 4.7825e+02],
[3.0707e+01, 1.3653e+02, 4.7746e+02, 4.7805e+02]], device='cuda:0')
bbox缩小后的值:
tensor([[5.8876e+01, 2.9494e+01, 9.0283e+01, 8.5657e+01],
[6.8989e-02, 3.7624e+01, 4.6512e+01, 1.0322e+02],
[1.4793e+02, 4.3590e+01, 1.5992e+02, 7.6024e+01],
[2.3580e+00, 3.8984e+01, 1.1971e+02, 1.1956e+02],
[7.6767e+00, 3.4133e+01, 1.1936e+02, 1.1951e+02]], device='cuda:0')
接下来便是将保证mask在Bbox内。
python
masks = crop_mask(masks, downsampled_bboxes)
python
def crop_mask(masks, boxes):
_, h, w = masks.shape
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(n,1,1)
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,1,w)
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(1,h,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
得到的mask依旧为(5,120,160)
,随后对mask
进行上采样,使其与原本的图像大小一样的,这里就已经是蒙版了,通过插值的方式进行上采样,得到的mask为(5,480,640)
mask的理解
在检测头(分割头)中输出的32 维的向量可以看作是与每个检测框关联的分割
mask
的系数或权重。针对于分割头的输出
1x32x160x160
,一个关键的概念是prototype masks
。它是一个固定数量(32)的基础mask,每个mask
的尺寸为160×160
。这些基础mask
并不直接对应于任何特定的物体或类别,而是被设计为可以线性组合来表示任何可能的物体mask
。
简单来说,模型不直接预测每个物体的完整mask
,而是预测一组基本的masks
(称为prototype masks
)以及每个物体如何组合这些masks
(权重/系数)。这种方法的好处是,模型只需要预测一个较小的mask
张量,然后可以通过简单的矩阵乘法将这些小mask
组合成完整的物体masks
。大家可以把它类比于线性代数中基向量的概念,空间中的任何一个向量是不是都可以表示为一组基向量的线性组合,那么其中的
prototype masks
即32x160x160
的mask
张量可以把它理解为一组基向量,而之前在检测框中的32
维向量可以理解为组合这一组基向量的权重或者说系数。
当我们从检测头得到一个32
维的向量,分割头得到32
个基础masks
时,这个32
维的向量实际上表示了如何组合这些基础masks
来得到一个特定物体的 mask。具体来说,我们用这个32
维向量对32
个基础 masks进行线性组合,从而得到与检测框关联的最终 mask。简单来说,这就像你现在有 32 种不同的颜料,检测头给你一个配方(32 维向量),告诉你如何混合这些颜料来得到一个特定的颜色(最终的 mask)。这样做的优点是我们不需要为每个检测框都预测一个完整的
mask
,这个非常消耗内存和计算资源。相反,我们只需要预测一个相对较小的32
维向量和一个固定数量的基础masks
,然后在后处理中进行组合即可。
结果可视化
最后附上将结果可视化的代码
python
import cv2
import numpy as np
from ultralytics import YOLO
def hsv2bgr(h, s, v):
h_i = int(h * 6)
f = h * 6 - h_i
p = v * (1 - s)
q = v * (1 - f * s)
t = v * (1 - (1 - f) * s)
r, g, b = 0, 0, 0
if h_i == 0:
r, g, b = v, t, p
elif h_i == 1:
r, g, b = q, v, p
elif h_i == 2:
r, g, b = p, v, t
elif h_i == 3:
r, g, b = p, q, v
elif h_i == 4:
r, g, b = t, p, v
elif h_i == 5:
r, g, b = v, p, q
return int(b * 255), int(g * 255), int(r * 255)
def random_color(id):
h_plane = (((id << 2) ^ 0x937151) % 100) / 100.0
s_plane = (((id << 3) ^ 0x315793) % 100) / 100.0
return hsv2bgr(h_plane, s_plane, 1)
if __name__ == "__main__":
model = YOLO("yolov8n-seg.pt")
img = cv2.imread("img.jpg")
result = model(img)[0]
names = result.names
boxes = result.boxes.data.tolist()
masks = result.masks
h, w = img.shape[:2]
for i, mask in enumerate(masks.data):
mask = mask.cpu().numpy().astype(np.uint8)
mask_resized = cv2.resize(mask, (w, h))
label = int(boxes[i][5])
color = np.array(random_color(label))
colored_mask = (np.ones((h, w, 3)) * color).astype(np.uint8)
masked_colored_mask = cv2.bitwise_and(colored_mask, colored_mask, mask=mask_resized)
mask_indices = mask_resized == 1
img[mask_indices] = (img[mask_indices] * 0.6 + masked_colored_mask[mask_indices] * 0.4).astype(np.uint8)
for obj in boxes:
left, top, right, bottom = int(obj[0]), int(obj[1]), int(obj[2]), int(obj[3])
confidence = obj[4]
label = int(obj[5])
color = random_color(label)
cv2.rectangle(img, (left, top), (right, bottom), color = color ,thickness=2, lineType=cv2.LINE_AA)
caption = f"{names[label]} {confidence:.2f}"
w, h = cv2.getTextSize(caption, 0, 1, 2)[0]
cv2.rectangle(img, (left - 3, top - 33), (left + w + 10, top), color, -1)
cv2.putText(img, caption, (left, top - 5), 0, 1, (0, 0, 0), 2, 16)
cv2.imwrite("predict-seg.jpg", img)
print("save done")