动态规划之斐波那契数列

动态规划(Dynamic Programming, DP)是一种算法策略,用于解决具有重叠子问题和最优子结构特性的问题。

问题描述

斐波那契数列是一个每一项都是前两项和的序列:0, 1, 1, 2, 3, 5, 8, 13, ...

动态规划解法

使用递归方法解决斐波那契数列问题会有很多重复计算,而动态规划通过存储中间结果来避免这种情况。

样例

计算斐波那契数列的第 n 项。

javascript 复制代码
// 动态规划求解斐波那契数列
function fibonacci(n) {
  // 创建一个数组来存储斐波那契数列的中间结果
  let fib = new Array(n + 1);

  // 初始值
  fib[0] = 0;
  fib[1] = 1;

  // 计算斐波那契数列的值
  for (let i = 2; i <= n; i++) {
    fib[i] = fib[i - 1] + fib[i - 2];
  }

  // 返回第 n 项
  return fib[n];
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacci(10)); // 输出 55

解释

我们创建了一个数组 fib 来存储已经计算过的斐波那契数列的值。

我们从第 2 项开始,使用 fib[i - 1] + fib[i - 2] 来计算当前项,这样避免了递归中的重复计算。

最终,fib[n] 存储的就是斐波那契数列的第 n 项。

优化空间复杂度

上述解法的空间复杂度为 O(n),我们可以通过只存储前两个值来优化到 O(1)。

优化后的代码

javascript 复制代码
function fibonacciOptimized(n) {
  if (n <= 1) return n;

  let prev = 0;
  let current = 1;

  for (let i = 2; i <= n; i++) {
    let temp = current;
    current = prev + current;
    prev = temp;
  }

  return current;
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacciOptimized(10)); // 输出 55

解释

我们使用两个变量 prev 和 current 来存储前两个斐波那契数。

在每次迭代中,我们更新这两个变量的值为新的斐波那契数。

这种方法只需要常数级别的空间。

以上就是文章全部内容了,如果喜欢这篇文章的话,还希望三连支持一下,感谢!

相关推荐
微笑尅乐6 小时前
力扣350.两个数组的交集II
java·算法·leetcode·动态规划
元亓亓亓8 小时前
LeetCode热题100--994. 腐烂的橘子--中等
算法·leetcode·职场和发展
(●—●)橘子……8 小时前
记力扣2516.每种字符至少取k个 练习理解
算法·leetcode·职场和发展
可触的未来,发芽的智生9 小时前
新奇特:神经网络烘焙坊(下),万能配方的甜蜜奥义
人工智能·python·神经网络·算法·架构
学c语言的枫子9 小时前
数据结构——基本排序算法
数据结构·算法·排序算法
jghhh019 小时前
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
开发语言·算法·matlab
And_Ii10 小时前
LeetCode 5.最长回文字符串
数据结构·算法·leetcode
未知陨落10 小时前
LeetCode:76.数据流的中位数
算法·leetcode
Asmalin10 小时前
【代码随想录day 28】 力扣 1005. K次取反后最大化的数组和
算法·leetcode·职场和发展
m0_7472660910 小时前
减治法计算数组中的零个数
数据结构·算法·leetcode