动态规划之斐波那契数列

动态规划(Dynamic Programming, DP)是一种算法策略,用于解决具有重叠子问题和最优子结构特性的问题。

问题描述

斐波那契数列是一个每一项都是前两项和的序列:0, 1, 1, 2, 3, 5, 8, 13, ...

动态规划解法

使用递归方法解决斐波那契数列问题会有很多重复计算,而动态规划通过存储中间结果来避免这种情况。

样例

计算斐波那契数列的第 n 项。

javascript 复制代码
// 动态规划求解斐波那契数列
function fibonacci(n) {
  // 创建一个数组来存储斐波那契数列的中间结果
  let fib = new Array(n + 1);

  // 初始值
  fib[0] = 0;
  fib[1] = 1;

  // 计算斐波那契数列的值
  for (let i = 2; i <= n; i++) {
    fib[i] = fib[i - 1] + fib[i - 2];
  }

  // 返回第 n 项
  return fib[n];
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacci(10)); // 输出 55

解释

我们创建了一个数组 fib 来存储已经计算过的斐波那契数列的值。

我们从第 2 项开始,使用 fib[i - 1] + fib[i - 2] 来计算当前项,这样避免了递归中的重复计算。

最终,fib[n] 存储的就是斐波那契数列的第 n 项。

优化空间复杂度

上述解法的空间复杂度为 O(n),我们可以通过只存储前两个值来优化到 O(1)。

优化后的代码

javascript 复制代码
function fibonacciOptimized(n) {
  if (n <= 1) return n;

  let prev = 0;
  let current = 1;

  for (let i = 2; i <= n; i++) {
    let temp = current;
    current = prev + current;
    prev = temp;
  }

  return current;
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacciOptimized(10)); // 输出 55

解释

我们使用两个变量 prev 和 current 来存储前两个斐波那契数。

在每次迭代中,我们更新这两个变量的值为新的斐波那契数。

这种方法只需要常数级别的空间。

以上就是文章全部内容了,如果喜欢这篇文章的话,还希望三连支持一下,感谢!

相关推荐
偷吃的耗子3 分钟前
【CNN算法理解】:CNN平移不变性详解:数学原理与实例
人工智能·算法·cnn
dazzle1 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
那个村的李富贵1 小时前
智能炼金术:CANN加速的新材料AI设计系统
人工智能·算法·aigc·cann
张张努力变强1 小时前
C++ STL string 类:常用接口 + auto + 范围 for全攻略,字符串操作效率拉满
开发语言·数据结构·c++·算法·stl
万岳科技系统开发1 小时前
食堂采购系统源码库存扣减算法与并发控制实现详解
java·前端·数据库·算法
张登杰踩1 小时前
MCR ALS 多元曲线分辨算法详解
算法
YuTaoShao2 小时前
【LeetCode 每日一题】3634. 使数组平衡的最少移除数目——(解法一)排序+滑动窗口
算法·leetcode·排序算法
波波0072 小时前
每日一题:.NET 的 GC是如何分代工作的?
算法·.net·gc
风暴之零2 小时前
变点检测算法PELT
算法
深鱼~2 小时前
视觉算法性能翻倍:ops-cv经典算子的昇腾适配指南
算法·cann