动态规划之斐波那契数列

动态规划(Dynamic Programming, DP)是一种算法策略,用于解决具有重叠子问题和最优子结构特性的问题。

问题描述

斐波那契数列是一个每一项都是前两项和的序列:0, 1, 1, 2, 3, 5, 8, 13, ...

动态规划解法

使用递归方法解决斐波那契数列问题会有很多重复计算,而动态规划通过存储中间结果来避免这种情况。

样例

计算斐波那契数列的第 n 项。

javascript 复制代码
// 动态规划求解斐波那契数列
function fibonacci(n) {
  // 创建一个数组来存储斐波那契数列的中间结果
  let fib = new Array(n + 1);

  // 初始值
  fib[0] = 0;
  fib[1] = 1;

  // 计算斐波那契数列的值
  for (let i = 2; i <= n; i++) {
    fib[i] = fib[i - 1] + fib[i - 2];
  }

  // 返回第 n 项
  return fib[n];
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacci(10)); // 输出 55

解释

我们创建了一个数组 fib 来存储已经计算过的斐波那契数列的值。

我们从第 2 项开始,使用 fib[i - 1] + fib[i - 2] 来计算当前项,这样避免了递归中的重复计算。

最终,fib[n] 存储的就是斐波那契数列的第 n 项。

优化空间复杂度

上述解法的空间复杂度为 O(n),我们可以通过只存储前两个值来优化到 O(1)。

优化后的代码

javascript 复制代码
function fibonacciOptimized(n) {
  if (n <= 1) return n;

  let prev = 0;
  let current = 1;

  for (let i = 2; i <= n; i++) {
    let temp = current;
    current = prev + current;
    prev = temp;
  }

  return current;
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacciOptimized(10)); // 输出 55

解释

我们使用两个变量 prev 和 current 来存储前两个斐波那契数。

在每次迭代中,我们更新这两个变量的值为新的斐波那契数。

这种方法只需要常数级别的空间。

以上就是文章全部内容了,如果喜欢这篇文章的话,还希望三连支持一下,感谢!

相关推荐
C语言魔术师40 分钟前
70. 爬楼梯
算法·动态规划
跳跳糖炒酸奶1 小时前
第二章、Isaaclab强化学习包装器(1)
人工智能·python·算法·ubuntu·机器人
许_安1 小时前
leetcode刷题日记——两数相加
算法·leetcode·职场和发展
夜晚中的人海2 小时前
【C语言】初阶算法相关习题(二)
c语言·开发语言·算法
PXM的算法星球2 小时前
【算法笔记】贪心算法
笔记·算法·贪心算法
傻欣2 小时前
代码随想录学习笔记---二叉树
笔记·学习·算法
WW_千谷山4_sch2 小时前
MYOJ_1349:(洛谷P3951)[NOIP 2017 提高组] 小凯的疑惑(数学公式套用,两步搞定代码)
c++·算法
我想进大厂2 小时前
图论---拓扑排序(DFS)
算法·深度优先·图论
泽02022 小时前
数据结构之排序
数据结构·算法·排序算法
AlgoNewbie3 小时前
ACM入门之【二分】
算法