动态规划之斐波那契数列

动态规划(Dynamic Programming, DP)是一种算法策略,用于解决具有重叠子问题和最优子结构特性的问题。

问题描述

斐波那契数列是一个每一项都是前两项和的序列:0, 1, 1, 2, 3, 5, 8, 13, ...

动态规划解法

使用递归方法解决斐波那契数列问题会有很多重复计算,而动态规划通过存储中间结果来避免这种情况。

样例

计算斐波那契数列的第 n 项。

javascript 复制代码
// 动态规划求解斐波那契数列
function fibonacci(n) {
  // 创建一个数组来存储斐波那契数列的中间结果
  let fib = new Array(n + 1);

  // 初始值
  fib[0] = 0;
  fib[1] = 1;

  // 计算斐波那契数列的值
  for (let i = 2; i <= n; i++) {
    fib[i] = fib[i - 1] + fib[i - 2];
  }

  // 返回第 n 项
  return fib[n];
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacci(10)); // 输出 55

解释

我们创建了一个数组 fib 来存储已经计算过的斐波那契数列的值。

我们从第 2 项开始,使用 fib[i - 1] + fib[i - 2] 来计算当前项,这样避免了递归中的重复计算。

最终,fib[n] 存储的就是斐波那契数列的第 n 项。

优化空间复杂度

上述解法的空间复杂度为 O(n),我们可以通过只存储前两个值来优化到 O(1)。

优化后的代码

javascript 复制代码
function fibonacciOptimized(n) {
  if (n <= 1) return n;

  let prev = 0;
  let current = 1;

  for (let i = 2; i <= n; i++) {
    let temp = current;
    current = prev + current;
    prev = temp;
  }

  return current;
}

// 示例:计算斐波那契数列的第 10 项
console.log(fibonacciOptimized(10)); // 输出 55

解释

我们使用两个变量 prev 和 current 来存储前两个斐波那契数。

在每次迭代中,我们更新这两个变量的值为新的斐波那契数。

这种方法只需要常数级别的空间。

以上就是文章全部内容了,如果喜欢这篇文章的话,还希望三连支持一下,感谢!

相关推荐
m0_736919103 分钟前
C++中的类型标签分发
开发语言·c++·算法
2301_7903009610 分钟前
C++与微服务架构
开发语言·c++·算法
重生之我是Java开发战士16 分钟前
【优选算法】前缀和:一二维前缀和,寻找数组的中心下标,除自身以外数组的乘积,和为K的子数组,和可被K整除的子数组,连续数组,矩阵区域和
线性代数·算法·矩阵
梵刹古音19 分钟前
【C语言】 循环结构
c语言·开发语言·算法
皮皮哎哟26 分钟前
冒泡排序与数组传递全解析 一维二维指针数组及二级指针应用指南
c语言·算法·冒泡排序·二维数组·指针数组·传参·二级指针
m0_5613596727 分钟前
C++代码冗余消除
开发语言·c++·算法
近津薪荼38 分钟前
优选算法——滑动窗口1(单调性)
c++·学习·算法
diediedei39 分钟前
嵌入式C++驱动开发
开发语言·c++·算法
燃于AC之乐44 分钟前
《算法实战笔记》第10期:六大算法实战——枚举、贪心、并查集、Kruskal、双指针、区间DP
算法·贪心算法·图论·双指针·区间dp·二进制枚举
diediedei1 小时前
高性能计算通信库
开发语言·c++·算法