数学基础 -- 卷积与矩阵乘法的区别

卷积与矩阵乘法的区别

卷积和矩阵乘法确实有不同之处。以下是它们的主要区别:

操作方式

  • 矩阵乘法 :涉及两个矩阵的元素按位置对应相乘,然后将这些乘积求和。例如,矩阵 A A A 和 B B B 的乘积 C = A × B C = A \times B C=A×B 时,矩阵 C C C 的每个元素 C i j C_{ij} Cij 是 A A A 的第 i i i 行和 B B B 的第 j j j 列的元素逐个相乘后求和的结果。
  • 卷积:卷积是一种滑动窗口操作。通常用于信号处理、图像处理和深度学习。卷积核(滤波器)在输入数据(如图像)上滑动,对窗口内的元素进行逐个相乘并求和,生成输出数据的每个元素。卷积操作包括翻转核的操作(在数学定义中),但在深度学习中一般不翻转。

用途

  • 矩阵乘法:主要用于线性代数中的各种操作,如线性变换、系统方程求解等。
  • 卷积:用于提取数据(特别是图像和信号)中的局部特征。卷积神经网络(CNN)就是通过层叠卷积操作来识别图像中的边缘、形状等特征。

输出尺寸

  • 矩阵乘法 :如果矩阵 A A A 是 m × n m \times n m×n 大小,矩阵 B B B 是 n × p n \times p n×p 大小,则结果矩阵 C C C 是 m × p m \times p m×p 大小。
  • 卷积:输出尺寸取决于输入数据大小、卷积核大小、步幅和填充方式。通常输出尺寸会比输入数据小,具体取决于参数设置。

计算复杂度

  • 矩阵乘法 :计算复杂度为 O ( m n p ) O(mnp) O(mnp)。
  • 卷积:计算复杂度取决于输入数据和卷积核的大小,以及步幅和填充设置。

总体而言,卷积和矩阵乘法在数学原理、操作方式以及应用场景上都有显著的不同。在图像处理和深度学习中,卷积操作特别重要,而矩阵乘法则广泛应用于各种数学计算和数据变换中。

相关推荐
无风听海9 小时前
CBOW 模型中输入矩阵、输出矩阵与词表向量矩阵深入解析
人工智能·机器学习·矩阵
张祥64228890412 小时前
线性代数本质十笔记
笔记·线性代数·机器学习
ct97813 小时前
gl-matrix矩阵库
矩阵·gis·gl-matrix
技术民工之路14 小时前
MATLAB线性方程组,运算符、inv()、pinv()全解析
线性代数·算法·matlab
a35354138214 小时前
牛顿迭代法中的雅克比矩阵几何意义
线性代数·算法
FL1717131414 小时前
黎曼几何/黎曼流形/黎曼度规/黎曼度量
线性代数
(; ̄ェ ̄)。15 小时前
机器学习入门(九)为什么sklearn正规方程法矩阵不可逆却可以计算出结果
机器学习·矩阵·sklearn
小尧嵌入式15 小时前
【Linux开发二】数字反转|除数累加|差分数组|vector插入和访问|小数四舍五入及向上取整|矩阵逆置|基础文件IO|深入文件IO
linux·服务器·开发语言·c++·线性代数·算法·矩阵
Σίσυφος190015 小时前
视觉矩阵之 正交矩阵
人工智能·算法·矩阵
好奇龙猫15 小时前
【大学院-筆記試験練習:线性代数和数据结构(13)】
数据结构·线性代数