数学基础 -- 卷积与矩阵乘法的区别

卷积与矩阵乘法的区别

卷积和矩阵乘法确实有不同之处。以下是它们的主要区别:

操作方式

  • 矩阵乘法 :涉及两个矩阵的元素按位置对应相乘,然后将这些乘积求和。例如,矩阵 A A A 和 B B B 的乘积 C = A × B C = A \times B C=A×B 时,矩阵 C C C 的每个元素 C i j C_{ij} Cij 是 A A A 的第 i i i 行和 B B B 的第 j j j 列的元素逐个相乘后求和的结果。
  • 卷积:卷积是一种滑动窗口操作。通常用于信号处理、图像处理和深度学习。卷积核(滤波器)在输入数据(如图像)上滑动,对窗口内的元素进行逐个相乘并求和,生成输出数据的每个元素。卷积操作包括翻转核的操作(在数学定义中),但在深度学习中一般不翻转。

用途

  • 矩阵乘法:主要用于线性代数中的各种操作,如线性变换、系统方程求解等。
  • 卷积:用于提取数据(特别是图像和信号)中的局部特征。卷积神经网络(CNN)就是通过层叠卷积操作来识别图像中的边缘、形状等特征。

输出尺寸

  • 矩阵乘法 :如果矩阵 A A A 是 m × n m \times n m×n 大小,矩阵 B B B 是 n × p n \times p n×p 大小,则结果矩阵 C C C 是 m × p m \times p m×p 大小。
  • 卷积:输出尺寸取决于输入数据大小、卷积核大小、步幅和填充方式。通常输出尺寸会比输入数据小,具体取决于参数设置。

计算复杂度

  • 矩阵乘法 :计算复杂度为 O ( m n p ) O(mnp) O(mnp)。
  • 卷积:计算复杂度取决于输入数据和卷积核的大小,以及步幅和填充设置。

总体而言,卷积和矩阵乘法在数学原理、操作方式以及应用场景上都有显著的不同。在图像处理和深度学习中,卷积操作特别重要,而矩阵乘法则广泛应用于各种数学计算和数据变换中。

相关推荐
iloveas20141 天前
three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)
线性代数·矩阵·webgl
Zda天天爱打卡2 天前
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南
python·线性代数·numpy
因兹菜2 天前
[LeetCode]day6 59.螺旋矩阵2
算法·leetcode·矩阵
এ旧栎3 天前
蓝桥与力扣刷题(240 搜索二维矩阵||)
算法·leetcode·矩阵·学习方法
背太阳的牧羊人3 天前
分词器的词表大小以及如果分词器的词表比模型的词表大,那么模型的嵌入矩阵需要被调整以适应新的词表大小。
开发语言·人工智能·python·深度学习·矩阵
cccc楚染rrrr3 天前
240. 搜索二维矩阵||
java·数据结构·线性代数·算法·矩阵
hey_sml3 天前
[NOIP2007]矩阵取数游戏
java·线性代数·算法
上海迪士尼354 天前
A星算法两元障碍物矩阵转化为rrt算法四元障碍物矩阵
算法·matlab·矩阵
嘻嘻仙人4 天前
第二讲 矩阵消元——用矩阵的左乘表示矩阵消元的过程
线性代数·矩阵·消元
Dann Hiroaki6 天前
随机矩阵投影长度保持引理及其证明
线性代数·矩阵·概率论