检索增强生成算法

检索增强生成算法(Retrieval-Augmented Generation,RAG)是由Patrick Lewis等人于2020年提出的(https://arxiv.org/pdf/2005.11401),主要用于辅助大规模语言模型(Large Language Models, LLMs)在生成结果之前,查阅/检索外部知识库,得到相关辅助资料,用于"开卷"作答(如果是问答应用模式下),使生成的内容具有除了大模型本身具备的知识以外,有外部知识的支撑和辅助。具体算法的架构图,如下:

图 RAG的算法框架图

其中,如果对于没有应用RAG进行文本生成,只需要图中的生成器部分,x为用户的提示词或者问题等,输入到生成器中,生成器一般使用常用的LLMs进行文本的生成操作。

而RAG加入了检索器模块,论文中使用的外部知识库是wikipedia文章库,针对用户输入x,到外部知识库中进行检索,得到最相关的k篇文章段落。将检索到的相关文章段落与用户输入进行拼接,一起输入到生成器进行生成操作。

一般的文本生成模型就是典型的seq2seq模型,输入和输出都是文本序列。通过文本对训练大型语言模型(LLMs),用户输入文本后使用预训练好的LLMs生成输出文本序列。使用过程完全依赖于LLMs在训练过程中习得的语言技能和知识。

RAG的加入,帮助LLMs使用外部知识,在一定程度上缓解大模型的幻觉问题、非实时性等问题。

(未完待续)

相关推荐
Coovally AI模型快速验证11 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然11 小时前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
Scabbards_11 小时前
KGGEN: 用语言模型从纯文本中提取知识图
人工智能·语言模型·自然语言处理
猫头虎12 小时前
昆仑芯 X HAMi X 百度智能云 | 昆仑芯 P800 XPU/vXPU 双模式算力调度方案落地
人工智能·百度·开源·aigc·文心一言·gpu算力·agi
tt55555555555514 小时前
Transformer原理与过程详解
网络·深度学习·transformer
极客密码15 小时前
充了20刀 Cursor Pro 的朋友看到我的方案沉默了...
aigc·ai编程·cursor
leafff12318 小时前
AI研究:大语言模型(LLMs)需要怎样的硬件算力
大数据·人工智能·语言模型
后端小肥肠18 小时前
10W+育儿漫画是怎么做的?我用n8n搭建了自动化工作流,3分钟生成到本地磁盘
人工智能·aigc·agent
盼小辉丶19 小时前
视觉Transformer实战——Vision Transformer(ViT)详解与实现
人工智能·深度学习·transformer
爱思德学术19 小时前
第二届中欧科学家论坛暨第七届人工智能与先进制造国际会议(AIAM 2025)在德国海德堡成功举办
人工智能·算法·机器学习·语言模型