AI学习记录 - transformers的decoder和encoder中的自注意力矩阵和掩码矩阵的数据处理

掩码掩码,指的是掩盖住后面的词汇的词向量对我当前词汇造成影响。把PAD字符设置成负无穷大,概念上不叫掩码,只是计算方式和掩码一样。

怎么生成掩码,在非掩码注意力矩阵中,把PAD词向量每个维度设置成负无穷大,或者设置掩码矩阵为负无穷大,矩阵乘法的效果是一样的。

在实际计算的过程中,掩码不仅仅只是生成一半就可以了,我都知道GPT其实有限制token长度这一说法,假如限制50个token,我们最后生成的注意力矩阵就是长宽都是50个,但是当我们的句子不够50的时候,剩下的位置需要用指定字符去填充。

如下图:第一个矩阵的意思是一半做掩码防止后面词语对当前词汇的影响,第二个矩阵是对 填充字符 做掩码,因为填充字符的语义我们也是要求为对句子的影响为0,两个矩阵叠加得到第三个矩阵。(注:下图是叉为负无穷大)

举个例子,构造好掩码矩阵之后,跟右边的词向量句子做矩阵乘法,根据上一章节,可以看到 PAD填充符 对句子影响为负无穷大,达到我们的要求:无关字符对句子影响为0。(注:下图是叉为负无穷大)

预测阶段注意力矩阵的计算 encoder 阶段,没有掩码(注:下图是叉为负无穷大)

传递个decoder的词向量矩阵,最右侧的词向量矩阵当中,最底下的PAD词向量的每一个维度都是负无穷大

decoder 阶段,,有两个注意力矩阵,一个有掩码,一个没有掩码(注:下图是叉为负无穷大)

有掩码,

上面有个极其重点的内容,经过上面的一次矩阵运算,其实我已经进行了一个序列的不同长度的训练

就是下面这种计算方式,已经帮助我同时训练了

输入:START, 输出 g

输入:START g, 输出 f

输入:START g f, 输出 h

输入:START g f h, 输出 PAD

我不用像传统训练方式一样构造上面这种数据。

试验:当我进行预测输入START的时候,掩码矩阵是动态生成的,由于其他都是负无穷大,只有第一行有数字,其他的权重不会对START造成影响。我在训练的时候,第一行权重除了第一个是数字,其他都是负无穷大,矩阵乘法的到这这行的权重和词向量每一行相乘,虽然预测阶段和训练阶段计算方式有略微区别,但是这种恰当的巧合使得我不用特意去构造训练数据,这是一个计算巧合,这种掩码机制恰好帮我训练了这么多数据,巧合巧合巧合巧合巧合巧合巧合巧合巧合巧合巧合巧合,如下:

上面走完之后,就到了没有掩码的注意力矩阵阶段,就是decoder和encoder结合的自注意力矩阵,这个矩阵的意思是a,b,c词分对 START 的影响程度, 对 g 的影响程度,对 f 的影响程度,对 h 的影响程度,将这些影响程度叠加在原来的 START,g,f,h上。
相关推荐
UQI-LIUWJ5 分钟前
李宏毅LLM笔记: AI Agent
人工智能·笔记
百度Geek说18 分钟前
百度阮瑜:百度大模型应用赋能产业智变|2025全球数字经济大会
人工智能
大明哥_22 分钟前
最新 Coze 教程:40+ 条视频涨粉 10W+,利用 Coze 工作流 + 视频组件,一键制作爆款小人国微景动画视频
人工智能·agent
Love__Tay26 分钟前
笔记/云计算基础
笔记·学习·云计算
SugarPPig30 分钟前
ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
人工智能
孤狼warrior35 分钟前
灰色预测模型
人工智能·python·算法·数学建模
AI生存日记37 分钟前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
求职小程序华东同舟求职1 小时前
龙旗科技社招校招入职测评25年北森笔试测评题库答题攻略
大数据·人工智能·科技
李元豪1 小时前
【行云流水ai笔记】粗粒度控制:推荐CTRL、GeDi 细粒度/多属性控制:推荐TOLE、GPT-4RL
人工智能·笔记
机器学习之心1 小时前
小波增强型KAN网络 + SHAP可解释性分析(Pytorch实现)
人工智能·pytorch·python·kan网络