【机器学习】随机森林

一、随机森林定义

随机森林(Random Forest, RF)是一种由 决策树 构成的 集成算法 ,采用的是 Bagging 方法,他在很多情况下都能有不错的表现。如下表。

二、数据读取

python 复制代码
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

data = pd.read_csv('D:/Personal Data/Learning Data/DL Learning Data/weather_classification_data.csv')
data

三、数据检查与预处理

python 复制代码
# 查看数据信息
data.info()
python 复制代码
# 查看分类特征的唯一值
characteristic = ['Cloud Cover','Season','Location','Weather Type']
for i in characteristic:
    print(f'{i}:')
    print(data[i].unique())
    print('-'*50)
python 复制代码
feature_map = {
    'Temperature': '温度',
    'Humidity': '湿度百分比',
    'Wind Speed': '风速',
    'Precipitation (%)': '降水量百分比',
    'Atmospheric Pressure': '大气压力',
    'UV Index': '紫外线指数',
    'Visibility (km)': '能见度'
}
plt.figure(figsize=(15, 10))

for i, (col, col_name) in enumerate(feature_map.items(), 1):
    plt.subplot(2, 4, i)
    sns.boxplot(y=data[col])
    plt.title(f'{col_name}的箱线图', fontsize=14)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()
python 复制代码
print(f"温度超过60°C的数据量:{data[data['Temperature'] > 60].shape[0]},占比{round(data[data['Temperature'] > 60].shape[0] / data.shape[0] * 100,2)}%。")
print(f"湿度百分比超过100%的数据量:{data[data['Humidity'] > 100].shape[0]},占比{round(data[data['Humidity'] > 100].shape[0] / data.shape[0] * 100,2)}%。")
print(f"降雨量百分比超过100%的数据量:{data[data['Precipitation (%)'] > 100].shape[0]},占比{round(data[data['Precipitation (%)'] > 100].shape[0] / data.shape[0] * 100,2)}%。")
python 复制代码
print("删前的数据shape:", data.shape)
data = data[(data['Temperature'] <= 60) & (data['Humidity'] <= 100) & (data['Precipitation (%)'] <= 100)]
print("删后的数据shape:", data.shape)

删前的数据shape: (13200, 11)

删后的数据shape: (12360, 11)

四、数据分析

python 复制代码
data.describe(include='all')
python 复制代码
plt.figure(figsize=(20, 15))
plt.subplot(3, 4, 1)
sns.histplot(data['Temperature'], kde=True,bins=20)
plt.title('温度分布')
plt.xlabel('温度')
plt.ylabel('频数')

plt.subplot(3, 4, 2)
sns.boxplot(y=data['Humidity'])
plt.title('湿度百分比箱线图')
plt.ylabel('湿度百分比')

plt.subplot(3, 4, 3)
sns.histplot(data['Wind Speed'], kde=True,bins=20)
plt.title('风速分布')
plt.xlabel('风速(km/h)')
plt.ylabel('频数')

plt.subplot(3, 4, 4)
sns.boxplot(y=data['Precipitation (%)'])
plt.title('降雨量百分比箱线图')
plt.ylabel('降雨量百分比')

plt.subplot(3, 4, 5)
sns.countplot(x='Cloud Cover', data=data)
plt.title('云量 (描述)分布')
plt.xlabel('云量 (描述)')
plt.ylabel('频数')

plt.subplot(3, 4, 6)
sns.histplot(data['Atmospheric Pressure'], kde=True,bins=10)
plt.title('大气压分布')
plt.xlabel('气压 (hPa)')
plt.ylabel('频数')

plt.subplot(3, 4, 7)
sns.histplot(data['UV Index'], kde=True,bins=14)
plt.title('紫外线等级分布')
plt.xlabel('紫外线指数')
plt.ylabel('频数')

plt.subplot(3, 4, 8)
Season_counts = data['Season'].value_counts()
plt.pie(Season_counts, labels=Season_counts.index, autopct='%1.1f%%', startangle=140)
plt.title('季节分布')

plt.subplot(3, 4, 9)
sns.histplot(data['Visibility (km)'], kde=True,bins=10)
plt.title('能见度分布')
plt.xlabel('能见度(Km)')
plt.ylabel('频数')

plt.subplot(3, 4, 10)
sns.countplot(x='Location', data=data)
plt.title('地点分布')
plt.xlabel('地点')
plt.ylabel('频数')

plt.subplot(3, 4, (11,12))
sns.countplot(x='Weather Type', data=data)
plt.title('天气类型分布')
plt.xlabel('天气类型')
plt.ylabel('频数')

plt.tight_layout()
plt.show()

五、随机森林

python 复制代码
new_data = data.copy()
label_encoders = {}
categorical_features = ['Cloud Cover', 'Season', 'Location', 'Weather Type']
for feature in categorical_features:
    le = LabelEncoder()
    new_data[feature] = le.fit_transform(data[feature])
    label_encoders[feature] = le

for feature in categorical_features:
    print(f"'{feature}'特征的对应关系:")
    for index, class_ in enumerate(label_encoders[feature].classes_):
        print(f"  {index}: {class_}")
python 复制代码
# 构建x,y
x = new_data.drop(['Weather Type'],axis=1)
y = new_data['Weather Type']

# 划分数据集
x_train,x_test,y_train,y_test = train_test_split(x,y,
                                                 test_size=0.3,
                                                 random_state=15) 

# 构建随机森林模型
rf_clf = RandomForestClassifier(random_state=15)
rf_clf.fit(x_train, y_train)
python 复制代码
# 使用随机森林进行预测
y_pred_rf = rf_clf.predict(x_test)
class_report_rf = classification_report(y_test, y_pred_rf)
print(class_report_rf)

六、结果分析

python 复制代码
feature_importances = rf_clf.feature_importances_
features_rf = pd.DataFrame({'特征': x.columns, '重要度': feature_importances})
features_rf.sort_values(by='重要度', ascending=False, inplace=True)
plt.figure(figsize=(10, 8))
sns.barplot(x='重要度', y='特征', data=features_rf)
plt.xlabel('重要度')
plt.ylabel('特征')
plt.title('随机森林特征图')
plt.show()

随机森林模型的预测准确率很高,并且通过特征度分析,发现影响模型的主要因素有:温度、湿度、紫外线指数、能见度、大气压力。

七、总结

数据预处理对于任何模型而言都是至关重要的。其中包含了对空值的处理、去重、去除噪声数据等。

相关推荐
新智元2 分钟前
Grok 4作战图刷爆全网,80%华人横扫硅谷!清华上交校友领衔,95后站C位
人工智能·openai
小宋0012 分钟前
使用LLaMA-Factory微调Qwen2.5-VL-3B 的目标检测任务-数据集格式转换(voc 转 ShareGPT)
人工智能·目标检测·计算机视觉
小哥谈17 分钟前
论文解析篇 | YOLOv12:以注意力机制为核心的实时目标检测算法
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
mit6.82422 分钟前
[Meetily后端框架] AI摘要结构化 | `SummaryResponse`模型 | Pydantic库 | vs marshmallow库
c++·人工智能·后端
阿里云大数据AI技术31 分钟前
Post-Training on PAI (3): 自研高性能强化学习框架PAI-ChatLearn
人工智能·开源·强化学习
二二孚日34 分钟前
自用华为ICT云赛道AI第三章知识点-MindSpore特性、MindSpore开发组件
人工智能·华为
水龙吟啸34 分钟前
从零开始搭建深度学习大厦系列-2.卷积神经网络基础(5-9)
人工智能·pytorch·深度学习·cnn·mxnet
蓝婷儿41 分钟前
Python 机器学习核心入门与实战进阶 Day 4 - 支持向量机(SVM)原理与分类实战
python·机器学习·支持向量机
杰夫贾维斯44 分钟前
CentOS Linux 8 的系统部署 Qwen2.5-7B -Instruct-AWQ
linux·运维·人工智能·机器学习·centos
m0_703323671 小时前
SEO外包服务甄选指南:避开陷阱,精准匹配
大数据·人工智能