【机器学习】随机森林

一、随机森林定义

随机森林(Random Forest, RF)是一种由 决策树 构成的 集成算法 ,采用的是 Bagging 方法,他在很多情况下都能有不错的表现。如下表。

二、数据读取

python 复制代码
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

data = pd.read_csv('D:/Personal Data/Learning Data/DL Learning Data/weather_classification_data.csv')
data

三、数据检查与预处理

python 复制代码
# 查看数据信息
data.info()
python 复制代码
# 查看分类特征的唯一值
characteristic = ['Cloud Cover','Season','Location','Weather Type']
for i in characteristic:
    print(f'{i}:')
    print(data[i].unique())
    print('-'*50)
python 复制代码
feature_map = {
    'Temperature': '温度',
    'Humidity': '湿度百分比',
    'Wind Speed': '风速',
    'Precipitation (%)': '降水量百分比',
    'Atmospheric Pressure': '大气压力',
    'UV Index': '紫外线指数',
    'Visibility (km)': '能见度'
}
plt.figure(figsize=(15, 10))

for i, (col, col_name) in enumerate(feature_map.items(), 1):
    plt.subplot(2, 4, i)
    sns.boxplot(y=data[col])
    plt.title(f'{col_name}的箱线图', fontsize=14)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()
python 复制代码
print(f"温度超过60°C的数据量:{data[data['Temperature'] > 60].shape[0]},占比{round(data[data['Temperature'] > 60].shape[0] / data.shape[0] * 100,2)}%。")
print(f"湿度百分比超过100%的数据量:{data[data['Humidity'] > 100].shape[0]},占比{round(data[data['Humidity'] > 100].shape[0] / data.shape[0] * 100,2)}%。")
print(f"降雨量百分比超过100%的数据量:{data[data['Precipitation (%)'] > 100].shape[0]},占比{round(data[data['Precipitation (%)'] > 100].shape[0] / data.shape[0] * 100,2)}%。")
python 复制代码
print("删前的数据shape:", data.shape)
data = data[(data['Temperature'] <= 60) & (data['Humidity'] <= 100) & (data['Precipitation (%)'] <= 100)]
print("删后的数据shape:", data.shape)

删前的数据shape: (13200, 11)

删后的数据shape: (12360, 11)

四、数据分析

python 复制代码
data.describe(include='all')
python 复制代码
plt.figure(figsize=(20, 15))
plt.subplot(3, 4, 1)
sns.histplot(data['Temperature'], kde=True,bins=20)
plt.title('温度分布')
plt.xlabel('温度')
plt.ylabel('频数')

plt.subplot(3, 4, 2)
sns.boxplot(y=data['Humidity'])
plt.title('湿度百分比箱线图')
plt.ylabel('湿度百分比')

plt.subplot(3, 4, 3)
sns.histplot(data['Wind Speed'], kde=True,bins=20)
plt.title('风速分布')
plt.xlabel('风速(km/h)')
plt.ylabel('频数')

plt.subplot(3, 4, 4)
sns.boxplot(y=data['Precipitation (%)'])
plt.title('降雨量百分比箱线图')
plt.ylabel('降雨量百分比')

plt.subplot(3, 4, 5)
sns.countplot(x='Cloud Cover', data=data)
plt.title('云量 (描述)分布')
plt.xlabel('云量 (描述)')
plt.ylabel('频数')

plt.subplot(3, 4, 6)
sns.histplot(data['Atmospheric Pressure'], kde=True,bins=10)
plt.title('大气压分布')
plt.xlabel('气压 (hPa)')
plt.ylabel('频数')

plt.subplot(3, 4, 7)
sns.histplot(data['UV Index'], kde=True,bins=14)
plt.title('紫外线等级分布')
plt.xlabel('紫外线指数')
plt.ylabel('频数')

plt.subplot(3, 4, 8)
Season_counts = data['Season'].value_counts()
plt.pie(Season_counts, labels=Season_counts.index, autopct='%1.1f%%', startangle=140)
plt.title('季节分布')

plt.subplot(3, 4, 9)
sns.histplot(data['Visibility (km)'], kde=True,bins=10)
plt.title('能见度分布')
plt.xlabel('能见度(Km)')
plt.ylabel('频数')

plt.subplot(3, 4, 10)
sns.countplot(x='Location', data=data)
plt.title('地点分布')
plt.xlabel('地点')
plt.ylabel('频数')

plt.subplot(3, 4, (11,12))
sns.countplot(x='Weather Type', data=data)
plt.title('天气类型分布')
plt.xlabel('天气类型')
plt.ylabel('频数')

plt.tight_layout()
plt.show()

五、随机森林

python 复制代码
new_data = data.copy()
label_encoders = {}
categorical_features = ['Cloud Cover', 'Season', 'Location', 'Weather Type']
for feature in categorical_features:
    le = LabelEncoder()
    new_data[feature] = le.fit_transform(data[feature])
    label_encoders[feature] = le

for feature in categorical_features:
    print(f"'{feature}'特征的对应关系:")
    for index, class_ in enumerate(label_encoders[feature].classes_):
        print(f"  {index}: {class_}")
python 复制代码
# 构建x,y
x = new_data.drop(['Weather Type'],axis=1)
y = new_data['Weather Type']

# 划分数据集
x_train,x_test,y_train,y_test = train_test_split(x,y,
                                                 test_size=0.3,
                                                 random_state=15) 

# 构建随机森林模型
rf_clf = RandomForestClassifier(random_state=15)
rf_clf.fit(x_train, y_train)
python 复制代码
# 使用随机森林进行预测
y_pred_rf = rf_clf.predict(x_test)
class_report_rf = classification_report(y_test, y_pred_rf)
print(class_report_rf)

六、结果分析

python 复制代码
feature_importances = rf_clf.feature_importances_
features_rf = pd.DataFrame({'特征': x.columns, '重要度': feature_importances})
features_rf.sort_values(by='重要度', ascending=False, inplace=True)
plt.figure(figsize=(10, 8))
sns.barplot(x='重要度', y='特征', data=features_rf)
plt.xlabel('重要度')
plt.ylabel('特征')
plt.title('随机森林特征图')
plt.show()

随机森林模型的预测准确率很高,并且通过特征度分析,发现影响模型的主要因素有:温度、湿度、紫外线指数、能见度、大气压力。

七、总结

数据预处理对于任何模型而言都是至关重要的。其中包含了对空值的处理、去重、去除噪声数据等。

相关推荐
东皇太星6 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin6 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群7 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸7 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI7 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99767 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
二川bro7 小时前
Python在AI领域应用全景:2025趋势与案例
开发语言·人工智能·python
AI-智能7 小时前
RAG 系统架构设计模式介绍
人工智能·langchain·llm·agent·知识库·rag·大模型应用
长桥夜波8 小时前
机器学习日报20
人工智能·机器学习
字节跳动视频云技术团队8 小时前
火山引擎多媒体实验室AIGC视频画质理解大模型VQ-Insight入选AAAI 2025 Oral
人工智能