OpenCV图像滤波(15)梯度计算函数Scharr()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数使用 Scharr 运算符计算图像的第一个 x- 或 y- 空间导数。

调用
Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType) \texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)} Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

等同于
Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType) \texttt{Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)} Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)

Scharr() 函数是 OpenCV 中用于计算图像梯度的一个函数,它是一种改进的 Sobel 操作算子,能够提供更精确的梯度估计。Scharr() 函数通常用于边缘检测和特征提取等图像处理任务中。

函数原型

cpp 复制代码
void cv::Scharr
(
	InputArray 	src,
	OutputArray 	dst,
	int 	ddepth,
	int 	dx,
	int 	dy,
	double 	scale = 1,
	double 	delta = 0,
	int 	borderType = BORDER_DEFAULT 
)		

参数

  • 参数src 输入图像。
  • 参数dst 与 src 具有相同大小和通道数的输出图像。
  • 参数ddepth 输出图像深度,参见 combinations
  • 参数dx x 方向导数的阶数。
  • 参数dy y 方向导数的阶数。
  • 参数scale 可选的缩放因子,应用于计算出的导数值;默认情况下,不应用任何缩放(参见 getDerivKernels 以获取更多细节)。
  • 参数delta 可选的 delta 值,在存储结果之前添加到结果中。
  • 参数borderType 像素外推方法,参见 BorderTypes。BORDER_WRAP 不受支持。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/erik.jpg", cv::IMREAD_GRAYSCALE );

    if ( img.empty() )
    {
        std::cout << "无法加载图像,请检查路径是否正确。" << std::endl;
        return -1;
    }
    cv::Size sz2Sh( 400, 600 );
    cv::resize( img, img, sz2Sh, 0, 0, cv::INTER_LINEAR_EXACT );
    // 计算 x 方向和 y 方向的梯度
    cv::Mat grad_x, grad_y;
    cv::Mat abs_grad_x, abs_grad_y;

    cv::Scharr( img, grad_x, CV_32F, 1, 0 );  // 计算 x 方向梯度
    cv::Scharr( img, grad_y, CV_32F, 0, 1 );  // 计算 y 方向梯度

    // 转换为绝对值
    cv::convertScaleAbs( grad_x, abs_grad_x );
    cv::convertScaleAbs( grad_y, abs_grad_y );

    // 显示结果
    cv::namedWindow( "Original Image", cv::WINDOW_NORMAL );
    cv::imshow( "Original Image", img );

    cv::namedWindow( "Gradient X", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient X", abs_grad_x );

    cv::namedWindow( "Gradient Y", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient Y", abs_grad_y );

    cv::waitKey( 0 );  // 等待按键

    return 0;
}

运行结果

相关推荐
有为少年5 分钟前
数据增强在小型卷积神经网络中的有效性探究
人工智能·深度学习·神经网络·机器学习·cnn
雪花desu8 分钟前
什么是融入 CoT 写 prompt
人工智能·语言模型
AIBox36519 分钟前
ChatGPT 中文版镜像官网,GPT5.2使用教程(2025年 12 月更新)
人工智能
测试人社区-千羽24 分钟前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
2501_9247949026 分钟前
企业AI转型为何难?——从“不敢用”到“用得稳”的路径重构
大数据·人工智能·重构
Tezign_space37 分钟前
小红书内容运营工具怎么选?专业视角拆解优质工具核心标准
大数据·人工智能·内容运营
老马啸西风39 分钟前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
康实训40 分钟前
养老实训室建设标准指南
大数据·人工智能·实训室·养老实训室·实训室建设
袖手蹲41 分钟前
Arduino UNO Q 烘托圣诞节气氛
人工智能·单片机·嵌入式硬件
wjykp1 小时前
part 3神经网络的学习
人工智能·神经网络·学习