OpenCV图像滤波(15)梯度计算函数Scharr()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数使用 Scharr 运算符计算图像的第一个 x- 或 y- 空间导数。

调用
Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType) \texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)} Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

等同于
Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType) \texttt{Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)} Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)

Scharr() 函数是 OpenCV 中用于计算图像梯度的一个函数,它是一种改进的 Sobel 操作算子,能够提供更精确的梯度估计。Scharr() 函数通常用于边缘检测和特征提取等图像处理任务中。

函数原型

cpp 复制代码
void cv::Scharr
(
	InputArray 	src,
	OutputArray 	dst,
	int 	ddepth,
	int 	dx,
	int 	dy,
	double 	scale = 1,
	double 	delta = 0,
	int 	borderType = BORDER_DEFAULT 
)		

参数

  • 参数src 输入图像。
  • 参数dst 与 src 具有相同大小和通道数的输出图像。
  • 参数ddepth 输出图像深度,参见 combinations
  • 参数dx x 方向导数的阶数。
  • 参数dy y 方向导数的阶数。
  • 参数scale 可选的缩放因子,应用于计算出的导数值;默认情况下,不应用任何缩放(参见 getDerivKernels 以获取更多细节)。
  • 参数delta 可选的 delta 值,在存储结果之前添加到结果中。
  • 参数borderType 像素外推方法,参见 BorderTypes。BORDER_WRAP 不受支持。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/erik.jpg", cv::IMREAD_GRAYSCALE );

    if ( img.empty() )
    {
        std::cout << "无法加载图像,请检查路径是否正确。" << std::endl;
        return -1;
    }
    cv::Size sz2Sh( 400, 600 );
    cv::resize( img, img, sz2Sh, 0, 0, cv::INTER_LINEAR_EXACT );
    // 计算 x 方向和 y 方向的梯度
    cv::Mat grad_x, grad_y;
    cv::Mat abs_grad_x, abs_grad_y;

    cv::Scharr( img, grad_x, CV_32F, 1, 0 );  // 计算 x 方向梯度
    cv::Scharr( img, grad_y, CV_32F, 0, 1 );  // 计算 y 方向梯度

    // 转换为绝对值
    cv::convertScaleAbs( grad_x, abs_grad_x );
    cv::convertScaleAbs( grad_y, abs_grad_y );

    // 显示结果
    cv::namedWindow( "Original Image", cv::WINDOW_NORMAL );
    cv::imshow( "Original Image", img );

    cv::namedWindow( "Gradient X", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient X", abs_grad_x );

    cv::namedWindow( "Gradient Y", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient Y", abs_grad_y );

    cv::waitKey( 0 );  // 等待按键

    return 0;
}

运行结果

相关推荐
阡之尘埃1 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力3 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20213 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧34 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽4 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_4 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客5 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI5 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-5 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh5 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能