OpenCV图像滤波(15)梯度计算函数Scharr()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数使用 Scharr 运算符计算图像的第一个 x- 或 y- 空间导数。

调用
Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType) \texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)} Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

等同于
Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType) \texttt{Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)} Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)

Scharr() 函数是 OpenCV 中用于计算图像梯度的一个函数,它是一种改进的 Sobel 操作算子,能够提供更精确的梯度估计。Scharr() 函数通常用于边缘检测和特征提取等图像处理任务中。

函数原型

cpp 复制代码
void cv::Scharr
(
	InputArray 	src,
	OutputArray 	dst,
	int 	ddepth,
	int 	dx,
	int 	dy,
	double 	scale = 1,
	double 	delta = 0,
	int 	borderType = BORDER_DEFAULT 
)		

参数

  • 参数src 输入图像。
  • 参数dst 与 src 具有相同大小和通道数的输出图像。
  • 参数ddepth 输出图像深度,参见 combinations
  • 参数dx x 方向导数的阶数。
  • 参数dy y 方向导数的阶数。
  • 参数scale 可选的缩放因子,应用于计算出的导数值;默认情况下,不应用任何缩放(参见 getDerivKernels 以获取更多细节)。
  • 参数delta 可选的 delta 值,在存储结果之前添加到结果中。
  • 参数borderType 像素外推方法,参见 BorderTypes。BORDER_WRAP 不受支持。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/erik.jpg", cv::IMREAD_GRAYSCALE );

    if ( img.empty() )
    {
        std::cout << "无法加载图像,请检查路径是否正确。" << std::endl;
        return -1;
    }
    cv::Size sz2Sh( 400, 600 );
    cv::resize( img, img, sz2Sh, 0, 0, cv::INTER_LINEAR_EXACT );
    // 计算 x 方向和 y 方向的梯度
    cv::Mat grad_x, grad_y;
    cv::Mat abs_grad_x, abs_grad_y;

    cv::Scharr( img, grad_x, CV_32F, 1, 0 );  // 计算 x 方向梯度
    cv::Scharr( img, grad_y, CV_32F, 0, 1 );  // 计算 y 方向梯度

    // 转换为绝对值
    cv::convertScaleAbs( grad_x, abs_grad_x );
    cv::convertScaleAbs( grad_y, abs_grad_y );

    // 显示结果
    cv::namedWindow( "Original Image", cv::WINDOW_NORMAL );
    cv::imshow( "Original Image", img );

    cv::namedWindow( "Gradient X", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient X", abs_grad_x );

    cv::namedWindow( "Gradient Y", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient Y", abs_grad_y );

    cv::waitKey( 0 );  // 等待按键

    return 0;
}

运行结果

相关推荐
兰亭妙微40 分钟前
用户体验的真正边界在哪里?对的 “认知负荷” 设计思考
人工智能·ux
13631676419侯1 小时前
智慧物流与供应链追踪
人工智能·物联网
TomCode先生1 小时前
MES 离散制造核心流程详解(含关键动作、角色与异常处理)
人工智能·制造·mes
zd2005721 小时前
AI辅助数据分析和学习了没?
人工智能·学习
johnny2331 小时前
强化学习RL
人工智能
乌恩大侠1 小时前
无线网络规划与优化方式的根本性变革
人工智能·usrp
放羊郎1 小时前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
王哈哈^_^1 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
SEOETC2 小时前
数字人技术:虚实交融的未来图景正在展开
人工智能
boonya2 小时前
从阿里云大模型服务平台百炼看AI应用集成与实践
人工智能·阿里云·云计算