OpenCV图像滤波(15)梯度计算函数Scharr()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数使用 Scharr 运算符计算图像的第一个 x- 或 y- 空间导数。

调用
Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType) \texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)} Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

等同于
Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType) \texttt{Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)} Sobel(src, dst, ddepth, dx, dy, FILTERSCHARR, scale, delta, borderType)

Scharr() 函数是 OpenCV 中用于计算图像梯度的一个函数,它是一种改进的 Sobel 操作算子,能够提供更精确的梯度估计。Scharr() 函数通常用于边缘检测和特征提取等图像处理任务中。

函数原型

cpp 复制代码
void cv::Scharr
(
	InputArray 	src,
	OutputArray 	dst,
	int 	ddepth,
	int 	dx,
	int 	dy,
	double 	scale = 1,
	double 	delta = 0,
	int 	borderType = BORDER_DEFAULT 
)		

参数

  • 参数src 输入图像。
  • 参数dst 与 src 具有相同大小和通道数的输出图像。
  • 参数ddepth 输出图像深度,参见 combinations
  • 参数dx x 方向导数的阶数。
  • 参数dy y 方向导数的阶数。
  • 参数scale 可选的缩放因子,应用于计算出的导数值;默认情况下,不应用任何缩放(参见 getDerivKernels 以获取更多细节)。
  • 参数delta 可选的 delta 值,在存储结果之前添加到结果中。
  • 参数borderType 像素外推方法,参见 BorderTypes。BORDER_WRAP 不受支持。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/erik.jpg", cv::IMREAD_GRAYSCALE );

    if ( img.empty() )
    {
        std::cout << "无法加载图像,请检查路径是否正确。" << std::endl;
        return -1;
    }
    cv::Size sz2Sh( 400, 600 );
    cv::resize( img, img, sz2Sh, 0, 0, cv::INTER_LINEAR_EXACT );
    // 计算 x 方向和 y 方向的梯度
    cv::Mat grad_x, grad_y;
    cv::Mat abs_grad_x, abs_grad_y;

    cv::Scharr( img, grad_x, CV_32F, 1, 0 );  // 计算 x 方向梯度
    cv::Scharr( img, grad_y, CV_32F, 0, 1 );  // 计算 y 方向梯度

    // 转换为绝对值
    cv::convertScaleAbs( grad_x, abs_grad_x );
    cv::convertScaleAbs( grad_y, abs_grad_y );

    // 显示结果
    cv::namedWindow( "Original Image", cv::WINDOW_NORMAL );
    cv::imshow( "Original Image", img );

    cv::namedWindow( "Gradient X", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient X", abs_grad_x );

    cv::namedWindow( "Gradient Y", cv::WINDOW_NORMAL );
    cv::imshow( "Gradient Y", abs_grad_y );

    cv::waitKey( 0 );  // 等待按键

    return 0;
}

运行结果

相关推荐
北京耐用通信1 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20091 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟1 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播1 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训2 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
懷淰メ2 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹2 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55182 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora2 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大2 小时前
关于前馈神经网络
人工智能·深度学习·神经网络