算法笔记|Day29动态规划II

算法笔记|Day29动态规划II

  • [☆☆☆☆☆leetcode 62.不同路径](#☆☆☆☆☆leetcode 62.不同路径)
  • [☆☆☆☆☆leetcode 63. 不同路径II](#☆☆☆☆☆leetcode 63. 不同路径II)
  • [☆☆☆☆☆leetcode 343. 整数拆分](#☆☆☆☆☆leetcode 343. 整数拆分)
  • [☆☆☆☆☆leetcode 96.不同的二叉搜索树](#☆☆☆☆☆leetcode 96.不同的二叉搜索树)

☆☆☆☆☆leetcode 62.不同路径

题目链接:leetcode 62.不同路径

题目分析

1.dp数组含义:dp[i][j]表示到达[i,j]位置的路径数量;

2.递推公式:dp[i][j]=dp[i-1][j]+dp[i][j-1](仅能向右或者向下走一步,那到达每个格子的路径数量为到达左一格和上一格路径数量的和);

3.初始化:dp[][1]=1,dp[1][]=1(即第一行和第一列仅有一种路径,赋初值为1);

4.遍历顺序:从左向右,从上向下。

代码

java 复制代码
class Solution {
    public int uniquePaths(int m, int n) {
        int dp[][]=new int[m][n];
        for(int i=0;i<m;i++)
            dp[i][0]=1;
        for(int j=0;j<n;j++)
            dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++)
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
        return dp[m-1][n-1];
    }
}

☆☆☆☆☆leetcode 63. 不同路径II

题目链接:leetcode 63. 不同路径II

题目分析

1.dp数组含义:dp[i][j]表示到达[i,j]位置的路径数量;

2.递推公式:dp[i][j]=dp[i-1][j]+dp[i][j-1](若该位置无障碍,仅能向右或者向下走一步,那到达每个格子的路径数量为到达左一格和上一格路径数量的和);

3.初始化:dp[][1]=1,dp[1][]=1(若该位置无障碍,第一行和第一列仅有一种路径,赋初值为1);

4.遍历顺序:从左向右,从上向下。

代码

java 复制代码
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m=obstacleGrid.length;
        int n=obstacleGrid[0].length;
        int dp[][]=new int[m][n];
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++)
            dp[i][0]=1;
        for(int j=0;j<n&&obstacleGrid[0][j]==0;j++)
            dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0)
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

☆☆☆☆☆leetcode 343. 整数拆分

题目链接:leetcode 343. 整数拆分

题目分析

1.dp数组含义:dp[i]为整数i可拆分的最大结果;

2.递推公式:dp[i]=Math.max(dp[i],Math.max(j*(i-j),jdp[i-j]))(考虑如何可以得到整数i的拆分,可以从1遍历j,通过j (i-j)直接相乘或者j*dp[i-j],相当于是拆分(i-j),取其最大值并于当前dp[i]比较后取更大的值作为dp[i]);

3.初始化:dp[2]=1(2可以拆分为1+1,其乘积为1);

4.遍历顺序:从前向后。

代码

java 复制代码
class Solution {
    public int integerBreak(int n) {
        int dp[]=new int[n+1];
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<i;j++)
            dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));
        }
        return dp[n];
    }
}

☆☆☆☆☆leetcode 96.不同的二叉搜索树

题目链接:leetcode 96.不同的二叉搜索树

题目分析

1.dp数组含义:dp[i]表示由i个节点组成且节点值从1到i互不相同的二叉搜索树的种类数;

2.递推公式:dp[i]=dp[0]*dp[i-1]+dp[1]*dp[i-2]+......+dp[i-2]*dp[1]+dp[i-1]*dp[0](对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j);

3.初始化:dp[0]=1(空节点也视作一种情况);

4.遍历顺序:从前向后。

代码

java 复制代码
class Solution {
    public int numTrees(int n) {
        int dp[]=new int[n+1];
        dp[0]=1;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            for(int j=1;j<=i;j++)
                dp[i]+=dp[j-1]*dp[i-j];
        }
        return dp[n];
    }
}
相关推荐
SoraLuna2 小时前
「Mac玩转仓颉内测版26」基础篇6 - 字符类型详解
开发语言·算法·macos·cangjie
雨中rain3 小时前
贪心算法(2)
算法·贪心算法
maknul4 小时前
【学习笔记】AD智能PDF导出(装配文件)
笔记·学习·pdf
sjsjs114 小时前
【数据结构-表达式解析】【hard】力扣224. 基本计算器
数据结构·算法·leetcode
C++忠实粉丝4 小时前
计算机网络socket编程(6)_TCP实网络编程现 Command_server
网络·c++·网络协议·tcp/ip·计算机网络·算法
坊钰4 小时前
【Java 数据结构】时间和空间复杂度
java·开发语言·数据结构·学习·算法
pq113_64 小时前
ftdi_sio应用学习笔记 4 - I2C
笔记·学习·linux驱动·ftdi_sio
武昌库里写JAVA4 小时前
一文读懂Redis6的--bigkeys选项源码以及redis-bigkey-online项目介绍
c语言·开发语言·数据结构·算法·二维数组
禊月初三5 小时前
LeetCode 4.寻找两个中序数组的中位数
c++·算法·leetcode
学习使我飞升5 小时前
spf算法、三类LSA、区间防环路机制/规则、虚连接
服务器·网络·算法·智能路由器