算法笔记|Day29动态规划II

算法笔记|Day29动态规划II

  • [☆☆☆☆☆leetcode 62.不同路径](#☆☆☆☆☆leetcode 62.不同路径)
  • [☆☆☆☆☆leetcode 63. 不同路径II](#☆☆☆☆☆leetcode 63. 不同路径II)
  • [☆☆☆☆☆leetcode 343. 整数拆分](#☆☆☆☆☆leetcode 343. 整数拆分)
  • [☆☆☆☆☆leetcode 96.不同的二叉搜索树](#☆☆☆☆☆leetcode 96.不同的二叉搜索树)

☆☆☆☆☆leetcode 62.不同路径

题目链接:leetcode 62.不同路径

题目分析

1.dp数组含义:dp[i][j]表示到达[i,j]位置的路径数量;

2.递推公式:dp[i][j]=dp[i-1][j]+dp[i][j-1](仅能向右或者向下走一步,那到达每个格子的路径数量为到达左一格和上一格路径数量的和);

3.初始化:dp[][1]=1,dp[1][]=1(即第一行和第一列仅有一种路径,赋初值为1);

4.遍历顺序:从左向右,从上向下。

代码

java 复制代码
class Solution {
    public int uniquePaths(int m, int n) {
        int dp[][]=new int[m][n];
        for(int i=0;i<m;i++)
            dp[i][0]=1;
        for(int j=0;j<n;j++)
            dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++)
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
        return dp[m-1][n-1];
    }
}

☆☆☆☆☆leetcode 63. 不同路径II

题目链接:leetcode 63. 不同路径II

题目分析

1.dp数组含义:dp[i][j]表示到达[i,j]位置的路径数量;

2.递推公式:dp[i][j]=dp[i-1][j]+dp[i][j-1](若该位置无障碍,仅能向右或者向下走一步,那到达每个格子的路径数量为到达左一格和上一格路径数量的和);

3.初始化:dp[][1]=1,dp[1][]=1(若该位置无障碍,第一行和第一列仅有一种路径,赋初值为1);

4.遍历顺序:从左向右,从上向下。

代码

java 复制代码
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m=obstacleGrid.length;
        int n=obstacleGrid[0].length;
        int dp[][]=new int[m][n];
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++)
            dp[i][0]=1;
        for(int j=0;j<n&&obstacleGrid[0][j]==0;j++)
            dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0)
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
}

☆☆☆☆☆leetcode 343. 整数拆分

题目链接:leetcode 343. 整数拆分

题目分析

1.dp数组含义:dp[i]为整数i可拆分的最大结果;

2.递推公式:dp[i]=Math.max(dp[i],Math.max(j*(i-j),jdp[i-j]))(考虑如何可以得到整数i的拆分,可以从1遍历j,通过j (i-j)直接相乘或者j*dp[i-j],相当于是拆分(i-j),取其最大值并于当前dp[i]比较后取更大的值作为dp[i]);

3.初始化:dp[2]=1(2可以拆分为1+1,其乘积为1);

4.遍历顺序:从前向后。

代码

java 复制代码
class Solution {
    public int integerBreak(int n) {
        int dp[]=new int[n+1];
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<i;j++)
            dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));
        }
        return dp[n];
    }
}

☆☆☆☆☆leetcode 96.不同的二叉搜索树

题目链接:leetcode 96.不同的二叉搜索树

题目分析

1.dp数组含义:dp[i]表示由i个节点组成且节点值从1到i互不相同的二叉搜索树的种类数;

2.递推公式:dp[i]=dp[0]*dp[i-1]+dp[1]*dp[i-2]+......+dp[i-2]*dp[1]+dp[i-1]*dp[0](对于第i个节点,需要考虑1作为根节点直到i作为根节点的情况,所以需要累加,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j);

3.初始化:dp[0]=1(空节点也视作一种情况);

4.遍历顺序:从前向后。

代码

java 复制代码
class Solution {
    public int numTrees(int n) {
        int dp[]=new int[n+1];
        dp[0]=1;
        dp[1]=1;
        for(int i=2;i<=n;i++){
            for(int j=1;j<=i;j++)
                dp[i]+=dp[j-1]*dp[i-j];
        }
        return dp[n];
    }
}
相关推荐
CoovallyAIHub37 分钟前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP2 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo2 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo2 小时前
300:最长递增子序列
算法
CoovallyAIHub7 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
使一颗心免于哀伤7 小时前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
CoovallyAIHub7 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法