Flink 流转表,表转流,watermark设置

首先创建一个流

复制代码
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class Nan {
    private String xing;
    private String name;
    private Long ts;
}


StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

DataStreamSource<String> sourceNan = env.socketTextStream("hdp01", 1111);
DataStreamSource<String> sourceNv = env.socketTextStream("hdp01", 2222);

System.setProperty("java.net.preferIPv4Stack", "true");

SingleOutputStreamOperator<Nan> beanNan = sourceNan.map(new MapFunction<String, Nan>() {
    @Override
    public Nan map(String s) throws Exception {
        try {
            String[] split = s.split(",");
            return new Nan(split[0].substring(0, 1), split[1], Long.parseLong(split[2]));
        } catch (Exception e) {
            return null;
        }
    }
}).filter(Objects::nonNull).assignTimestampsAndWatermarks(
        WatermarkStrategy.<Nan>forMonotonousTimestamps().withTimestampAssigner(new SerializableTimestampAssigner<Nan>() {
    @Override
    public long extractTimestamp(Nan nan, long l) {
        return nan.getTs();
    }
})).returns(TypeInformation.of(Nan.class));

流转表

流转表的时候有一个点要注意,watermark必须要重新指定,否则会丢失,常用的方式如下

1、沿用流上的watermark

复制代码
tenv.createTemporaryView("nan", beanNan, Schema.newBuilder()
        .column("xing", DataTypes.STRING())
        .column("name", DataTypes.STRING())
        .column("ts", DataTypes.TIMESTAMP_LTZ(3))
        .watermark("rt","source_watermark()")
        .build() );

2、重新创建watermark

复制代码
tenv.createTemporaryView("nan", beanNan, Schema.newBuilder()
        .column("xing", DataTypes.STRING())
        .column("name", DataTypes.STRING())
        .column("rt", DataTypes.BIGINT())
        .watermark("rt","rt - interval '1' second")
        .build() );

3、根据内置属性rowtime创建watermark

复制代码
tenv.createTemporaryView("nan1", beanNan, Schema.newBuilder()
        .column("xing", DataTypes.STRING())
        .column("name", DataTypes.STRING())
        .column("ts", DataTypes.BIGINT())
        .columnByMetadata("rt", DataTypes.TIMESTAMP_LTZ(3),"rowtime")
        .watermark("rt","rt - interval '1' second")
        .build() );

使用表

复制代码
TableResult tableResult = tenv.executeSql("select *,current_watermark(rt) from nan");
tableResult.print();
相关推荐
TM1Club19 分钟前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
zhang1338308907523 分钟前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
电商API_180079052472 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
龙山云仓2 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
躺柒3 小时前
读数字时代的网络风险管理:策略、计划与执行04风险指引体系
大数据·网络·信息安全·数字化·网络管理·网络风险管理
独自归家的兔5 小时前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
海域云-罗鹏5 小时前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
策知道6 小时前
依托政府工作报告准备省考【经验贴】
大数据·数据库·人工智能·搜索引擎·政务
Henry-SAP6 小时前
SAP(ERP) 组织结构业务视角解析
大数据·人工智能·sap·erp·sap pp
TracyCoder1238 小时前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎