Flink 流转表,表转流,watermark设置

首先创建一个流

复制代码
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class Nan {
    private String xing;
    private String name;
    private Long ts;
}


StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

DataStreamSource<String> sourceNan = env.socketTextStream("hdp01", 1111);
DataStreamSource<String> sourceNv = env.socketTextStream("hdp01", 2222);

System.setProperty("java.net.preferIPv4Stack", "true");

SingleOutputStreamOperator<Nan> beanNan = sourceNan.map(new MapFunction<String, Nan>() {
    @Override
    public Nan map(String s) throws Exception {
        try {
            String[] split = s.split(",");
            return new Nan(split[0].substring(0, 1), split[1], Long.parseLong(split[2]));
        } catch (Exception e) {
            return null;
        }
    }
}).filter(Objects::nonNull).assignTimestampsAndWatermarks(
        WatermarkStrategy.<Nan>forMonotonousTimestamps().withTimestampAssigner(new SerializableTimestampAssigner<Nan>() {
    @Override
    public long extractTimestamp(Nan nan, long l) {
        return nan.getTs();
    }
})).returns(TypeInformation.of(Nan.class));

流转表

流转表的时候有一个点要注意,watermark必须要重新指定,否则会丢失,常用的方式如下

1、沿用流上的watermark

复制代码
tenv.createTemporaryView("nan", beanNan, Schema.newBuilder()
        .column("xing", DataTypes.STRING())
        .column("name", DataTypes.STRING())
        .column("ts", DataTypes.TIMESTAMP_LTZ(3))
        .watermark("rt","source_watermark()")
        .build() );

2、重新创建watermark

复制代码
tenv.createTemporaryView("nan", beanNan, Schema.newBuilder()
        .column("xing", DataTypes.STRING())
        .column("name", DataTypes.STRING())
        .column("rt", DataTypes.BIGINT())
        .watermark("rt","rt - interval '1' second")
        .build() );

3、根据内置属性rowtime创建watermark

复制代码
tenv.createTemporaryView("nan1", beanNan, Schema.newBuilder()
        .column("xing", DataTypes.STRING())
        .column("name", DataTypes.STRING())
        .column("ts", DataTypes.BIGINT())
        .columnByMetadata("rt", DataTypes.TIMESTAMP_LTZ(3),"rowtime")
        .watermark("rt","rt - interval '1' second")
        .build() );

使用表

复制代码
TableResult tableResult = tenv.executeSql("select *,current_watermark(rt) from nan");
tableResult.print();
相关推荐
道一云黑板报1 分钟前
Spark云原生流处理实战与风控应用
大数据·ai·云原生·spark·kubernetes·ai编程
君不见,青丝成雪2 小时前
清分系统在电商中的一些案例
java·大数据·系统架构
电商软件开发小辛9 小时前
解析电商本地生活竞争:从我店模式创新到生态协同的进化路径
大数据
2501_9248785912 小时前
强光干扰下漏检率↓78%!陌讯动态决策算法在智慧交通违停检测的实战优化
大数据·深度学习·算法·目标检测·视觉检测
做科研的周师兄12 小时前
【机器学习入门】1.2 初识机器学习:从数据到智能的认知之旅
大数据·数据库·人工智能·python·机器学习·数据分析·机器人
IT毕设梦工厂13 小时前
大数据毕业设计选题推荐-基于大数据的丙型肝炎患者数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·bigdata
阿里云大数据AI技术14 小时前
【跨国数仓迁移最佳实践7】基于MaxCompute多租的大数据平台架构
大数据
阿里云大数据AI技术14 小时前
ODPS 十五周年实录 | Data + AI,MaxCompute 下一个15年的新增长引擎
大数据·python·sql
SelectDB14 小时前
2-5 倍性能提升,30% 成本降低,阿里云 SelectDB 存算分离架构助力波司登集团实现降本增效
大数据·数据库·数据分析
随心............15 小时前
Spark面试题
大数据·分布式·spark