AI搜索引擎Perplexica的本地部署(之二)Perplexica的非docker安装

Perplex 是一个开源的AI 驱动的搜索引擎,可以使用 Grok 和 Open AI 等模型在计算机上本地安装和运行。它为学术研究、写作、YouTube 和 Reddit 提供了一系列搜索功能。用户可以通过选择不同的模型、设置本地嵌入模型和探索各种搜索选项来定制他们的体验。该工具演示了搜索 AI 新闻、学术论文和 YouTube 视频,提供相关信息并根据搜索查询生成响应。

接下来我们开始安装Perplexica

一:硬件配置

服务器配置:ubuntu22.04,2C8G。

安装位置:/app/Perplexica

安装方式:none-docker方式

二:环境准备

1、安装nodejs

复制代码
#设置运行环境
sudo apt-get install python3 g++ make python3-pip

#安装nvm
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.0/install.sh | bash

#使生效
source ~/.bashrc

#安装nodejs
nvm install 18

注:国内镜像源设置

复制代码
npm config set registry https://registry.npmmirror.com

2、安装ubuntu的图形界面

目前Perplexica只支持本机浏览,不支持共享浏览器使用。

复制代码
sudo apt install gnome-panel gnome-settings-daemon metacity nautilus gnome-terminal ubuntu-desktop

3、设置默认图形界面启动

复制代码
sudo systemctl set-default graphical.target

4、安装Chrome浏览器(假如需要)

复制代码
sudo apt install chromium-browser

三:安装Perplexica后端

1、克隆代码库

复制代码
git clone https://github.com/ItzCrazyKns/Perplexica.git

2、设置后端

复制代码
#进入代码目录
cd /app/Perplexica/

#生成配置文件
cp sample.config.toml config.toml

修改config.toml

复制代码
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"

[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef

[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL
OLLAMA = "" # Ollama API URL - http://host.docker.internal:11434

其中:

SEARXNG地址即为我们上一章安装的searxng的地址

OLLAMA地址即为实际ollama访问地址,比如http://IP:11434

因为我们没有使用docker安装,这里直接写真实的ollama地址。

3、编译代码

复制代码
npm i
npm run build

4、运行后端

复制代码
#运行后端
npm run start

四:安装Perplexica前端

1、设置前端配置文件

复制代码
#设置前端配置文件
cd /app/Perplexica/ui/
cp .env.example .env

前端.env文件无需修改

复制代码
NEXT_PUBLIC_WS_URL=ws://localhost:3001
NEXT_PUBLIC_API_URL=http://localhost:3001/api

无需修改3001端口

2、编译代码:

复制代码
#编译前端代码
npm i 
npm run build 

如果在编译过程报错,留意报错内容,绝大部分原因是网络造成的,可以多运行几次。 强烈建议改用国内镜像源,以减少出错。

3、运行前端

复制代码
#运行前端
npm run start 

五:运行

运行前,请确保前后端都已运行起来。然后在浏览器里打开。

http://local-ip:3000

注意下面的这些资源并不是所有都可以访问的,小伙伴们可以自己每一个都试试。

模型设置

可以选择ollama里面你pull下来的相关模型。 从第三方计算机,打开这个浏览器,可以看不到哦,如下图:

这个并不是问题,问题是当前该版本不支持共享访问,只能从本机访问。

相关推荐
延凡科技3 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329723 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔4 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案5 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信5 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博6 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
打工的小王6 小时前
docker(三)具体项目的部署
运维·docker·容器
沃达德软件7 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车7 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经7 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能