学习就是从训练数据中自动 获取最优****权重参数 的过程。引入损失函数 这一指标,学习的目的是找出 使损失函数 达到最小的权重参数。使用函数斜率的梯度法来找这个最小值。
人工智能有两派,一派认为实现人工智能必须用逻辑和符号系统,自顶向下看问题;另一派认为通过仿造人脑可以达到人工智能,自底向上看问题。前一派是"想啥来啥 ",后一派是"吃啥补啥"。前者偏唯心,后者偏唯物。两派一直是人工智能领域"两个阶级、两条路线"的斗争,这斗争有时还是你死我活。今天学习的是神经网络派。
4.1 从数据中学习
4.1.1 数据驱动
数据是机器学习的命根子。机器学习避免人为介入,通过数据发现模式。比如识别手写数字5,可以从图像中提取特征量,再用机器学习学习这些特征量的模式。其中图像转换为向量时使用的特征量仍由人设计,不同问题需要人工考虑不同的特征量。
神经网络(深度学习)称为端到端学习,图像中的特征量也由机器来学习。不管识别5还是识别狗,神经网络都是通过不断学习数据,尝试发现模式。
4.1.2 训练数据和测试数据
追求的模型泛化能力 。训练数据也叫监督数据。一套数据集,无法获得正确的评价。要避免对某数据集的过拟合。
4.2 损失函数