深度学习入门-第4章-神经网络的学习

学习就是从训练数据中自动 获取最优****权重参数 的过程。引入损失函数 这一指标,学习的目的是找出 使损失函数 达到最小的权重参数。使用函数斜率的梯度法来找这个最小值。

人工智能有两派,一派认为实现人工智能必须用逻辑和符号系统,自顶向下看问题;另一派认为通过仿造人脑可以达到人工智能,自底向上看问题。前一派是"想啥来啥 ",后一派是"吃啥补啥"。前者偏唯心,后者偏唯物。两派一直是人工智能领域"两个阶级、两条路线"的斗争,这斗争有时还是你死我活。今天学习的是神经网络派。

4.1 从数据中学习

4.1.1 数据驱动

数据是机器学习的命根子。机器学习避免人为介入,通过数据发现模式。比如识别手写数字5,可以从图像中提取特征量,再用机器学习学习这些特征量的模式。其中图像转换为向量时使用的特征量仍由人设计,不同问题需要人工考虑不同的特征量。

神经网络(深度学习)称为端到端学习,图像中的特征量也由机器来学习。不管识别5还是识别狗,神经网络都是通过不断学习数据,尝试发现模式。

4.1.2 训练数据和测试数据

追求的模型泛化能力 。训练数据也叫监督数据。一套数据集,无法获得正确的评价。要避免对某数据集的过拟合

4.2 损失函数

相关推荐
呱呱巨基3 小时前
Linux 进程概念
linux·c++·笔记·学习
yong15858553433 小时前
2. Linux C++ muduo 库学习——原子变量操作头文件
linux·c++·学习
IDIOT___IDIOT4 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans
Rousson5 小时前
硬件学习笔记--91 TMR型互感器介绍
笔记·学习
前端 贾公子5 小时前
Vue响应式原理学习:基本原理
javascript·vue.js·学习
Slaughter信仰6 小时前
图解大模型_生成式AI原理与实战学习笔记前四张问答(7题)
人工智能·笔记·学习
2401_834517077 小时前
AD学习笔记-26 Active Routing
笔记·学习
哥布林学者7 小时前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识(三)简单卷积网络
深度学习·ai
QiZhang | UESTC7 小时前
学习日记day45
学习
菜鸟‍7 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习