基于时域卷积神经网络的时间序列异常检测(Python)

复制代码
pip install darts

Importing Necessary FrameWorks

复制代码
import pandas as pd
from darts import TimeSeries
from darts.dataprocessing.transformers import Scaler
from darts.models import TCNModel
from darts import TimeSeries
from darts.ad.utils import (
    eval_metric_from_binary_prediction,
    eval_metric_from_scores,
    show_anomalies_from_scores,
)
from darts.ad import (
    ForecastingAnomalyModel,
    KMeansScorer,
    NormScorer,
    WassersteinScorer,
)
from darts.metrics import mae, rmse
import logging
import torch
import numpy as np

Data Loading and preparation for Training

复制代码
# Load the data (replace 'train.txt' and 'test.txt' with your actual file names)
train_data = pd.read_csv('ECG5000_TRAIN.txt', delim_whitespace=True, header=None)
test_data = pd.read_csv('ECG5000_TEST.txt', delim_whitespace=True, header=None)


# Check for null values in both datasets
print("Null values in training data:", train_data.isnull().sum().sum())
print("Null values in testing data:", test_data.isnull().sum().sum())
Null values in training data: 0
Null values in testing data: 0
# Merge the datasets row-wise
combined_data = pd.concat([train_data, test_data], axis=0).reset_index(drop=True)


train_final = combined_data[combined_data[0] == 1].reset_index(drop=True)
test_final = combined_data[combined_data[0] != 1].reset_index(drop=True)


# Drop the label column (0th column)
train_final = train_final.drop(columns=[0])
test_final = test_final.drop(columns=[0])




# Convert to TimeSeries objects
series = TimeSeries.from_dataframe(train_final)
test_series = TimeSeries.from_dataframe(test_final)
# anomalies = TimeSeries.from_dataframe(anomalies)


# Manually split the data into train and validation sets (e.g., 80% train, 20% val)
train_size = int(0.8 * len(series))
train_series = series[:train_size]
val_series = series[train_size:]

Data Normalization Using Darts

复制代码
# Normalize the data using Darts Scaler
scaler = Scaler()
train_series_scaled = scaler.fit_transform(train_series)
val_series_scaled = scaler.transform(val_series)
test_series_scaled = scaler.transform(test_series)

Early Stopping

复制代码
from pytorch_lightning.callbacks.early_stopping import EarlyStopping


# stop training when validation loss does not decrease more than 0.05 (`min_delta`) over
# a period of 5 epochs (`patience`)
my_stopper = EarlyStopping(
    monitor="val_loss",
    patience=5,
    min_delta=0.05,
    mode='min',
)
# Define and train the TCN model without covariates
model = TCNModel(
    input_chunk_length=30,  # Adjust based on your data
    output_chunk_length=10,  # Adjust based on desired forecast horizon,
    dropout=0.3,               # Dropout rate to prevent overfitting
    weight_norm=True,
    random_state=42,
    pl_trainer_kwargs={"callbacks": [my_stopper]}
)
# Fit the model on the training data
model.fit(series=train_series_scaled, val_series=val_series_scaled, epochs = 30)
TCNModel(output_chunk_shift=0, kernel_size=3, num_filters=3, num_layers=None, dilation_base=2, weight_norm=True, dropout=0.3, input_chunk_length=30, output_chunk_length=10, random_state=42, pl_trainer_kwargs={'callbacks': [<pytorch_lightning.callbacks.early_stopping.EarlyStopping object at 0x7baec921b250>]})
# torch.save(model.state_dict(), 'model.pth')
torch.save(model, 'full_model.pth')

Comparing Actual Vs Prediction For VAL Data

复制代码
# Number of samples to visualize
num_samples = 5


plt.figure(figsize=(15, num_samples * 5))


for i in range(num_samples):


    val_series_sample = val_series_scaled[i]


    # Predict using the model
    prediction = model.predict(n=len(val_series_sample))


    # Convert the TimeSeries objects to numpy arrays for plotting
    actual_values = val_series_sample.pd_dataframe().values.flatten()
    predicted_values = prediction.pd_dataframe().values.flatten()


    # Plot the results
    plt.figure(figsize=(8,8))
    plt.subplot(num_samples, 1, i + 1)
    plt.plot(actual_values, label='Actual Values', color='blue')
    plt.plot(predicted_values, label='Predicted Values', color='red', linestyle='--')
    plt.title(f'Sample {i + 1}')
    plt.xlabel('Time')
    plt.ylabel('Value')
    plt.legend()
    plt.grid(True)




plt.tight_layout()
plt.show()

Comparing Actual Vs Predicted For Test Data

复制代码
num_samples = 5


plt.figure(figsize=(15, num_samples * 5))


for i in range(num_samples):
    # Extract the i-th test series
    test_series_sample = test_series_scaled[i]


    # Predict using the model
    prediction = model.predict(n=len(test_series_sample))


    # Convert the TimeSeries objects to numpy arrays for plotting
    actual_values = test_series_sample.pd_dataframe().values.flatten()
    predicted_values = prediction.pd_dataframe().values.flatten()


    # Plot the results
    plt.subplot(num_samples, 1, i + 1)
    plt.plot(actual_values, label='Actual Values', color='blue')
    plt.plot(predicted_values, label='Predicted Values', color='red', linestyle='--')
    plt.title(f'Test Sample {i + 1}')
    plt.xlabel('Time')
    plt.ylabel('Value')
    plt.legend()
    plt.grid(True)


plt.tight_layout()
plt.show()

Checking Val Prediction Error to find Suitable Threshold

复制代码
# Parameters
chunk_size = 20
num_chunks_divisor = 7


# Initialize lists to store chunk-wise errors and average errors per series
chunk_errors_list = []
average_errors_per_series = []


# Set logging level to suppress PyTorch Lightning outputs
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)


# Iterate over each validation sample
for val_series in val_series_scaled:
    # Predict using the model
    prediction = model.predict(n=len(val_series))


    # Convert TimeSeries objects to numpy arrays
    actual_values = val_series.pd_dataframe().values.flatten()
    predicted_values = prediction.pd_dataframe().values.flatten()


    # Ensure actual and predicted values have the same length
    if len(actual_values) != len(predicted_values):
        continue  # Skip if lengths do not match


    # Compute average error per chunk
    chunk_errors = []
    num_chunks = len(actual_values) // chunk_size


    for i in range(num_chunks):
        start_idx = i * chunk_size
        end_idx = start_idx + chunk_size
        chunk_actual = actual_values[start_idx:end_idx]
        chunk_predicted = predicted_values[start_idx:end_idx]


        # Calculate error for the chunk
        chunk_error = np.mean(np.abs(chunk_actual - chunk_predicted))
        chunk_errors.append(chunk_error)
        chunk_errors_list.extend(chunk_errors)  # Add chunk errors to the list


    # Calculate average chunk error per series
    average_chunk_error = np.mean(chunk_errors)
    average_error_per_series = average_chunk_error
    average_errors_per_series.append(average_error_per_series)


# Sort chunk errors in descending order
chunk_errors_list_sorted = sorted(chunk_errors_list, reverse=True)


# Plot error vs. series number
plt.figure(figsize=(10, 6))
plt.plot(range(len(average_errors_per_series)), average_errors_per_series, marker='o', linestyle='-', color='blue')
plt.title('Average Error per Series with Threshold')
plt.xlabel('Series Number')
plt.ylabel('Average Error')
plt.legend()
plt.grid(True)
plt.show()

As it can be seen from upper graph, 0.15 is a good option for threshold.

Anomaly Detection Based On Error

复制代码
chunk_size = 20
error_threshold = 0.15


# Select a random test sample
import random
sample_index = 1000
test_series_sample = test_series_scaled[sample_index]


# Predict using the model
prediction = model.predict(n=len(test_series_sample))


# Convert TimeSeries objects to numpy arrays
actual_values = test_series_sample.pd_dataframe().values.flatten()
predicted_values = prediction.pd_dataframe().values.flatten()


# Ensure actual and predicted values have the same length
if len(actual_values) != len(predicted_values):
    raise ValueError("Actual and predicted values have different lengths.")


# Compute average error per chunk
chunk_errors = []
num_chunks = len(actual_values) // chunk_size
anomaly_flags = np.zeros(len(actual_values))


for i in range(num_chunks):
    start_idx = i * chunk_size
    end_idx = start_idx + chunk_size
    chunk_actual = actual_values[start_idx:end_idx]
    chunk_predicted = predicted_values[start_idx:end_idx]


    # Calculate error for the chunk
    chunk_error = np.mean(np.abs(chunk_actual - chunk_predicted))
    chunk_errors.append(chunk_error)


    # Flag anomalies based on error threshold
    if chunk_error > error_threshold:
        anomaly_flags[start_idx:end_idx] = 1


# Plot actual values, predicted values, and anomalies
plt.figure(figsize=(15, 8))


# Plot actual and predicted values
plt.subplot(3, 1, 1)
plt.plot(actual_values, label='Actual Values', color='blue')
plt.plot(predicted_values, label='Predicted Values', color='red', linestyle='--')
plt.title(f'Test Sample {sample_index + 1} - Actual vs. Predicted')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
plt.grid(True)


# Plot chunk-wise errors
plt.subplot(3, 1, 2)
plt.plot(range(num_chunks), chunk_errors, marker='o', linestyle='-', color='blue')
plt.axhline(y=error_threshold, color='r', linestyle='--', label='Error Threshold')
plt.title(f'Chunk-wise Error for Test Sample {sample_index + 1}')
plt.xlabel('Chunk Index')
plt.ylabel('Average Error')
plt.legend()
plt.grid(True)


# Plot anomaly flags
plt.subplot(3, 1, 3)
plt.plot(anomaly_flags, label='Anomaly Flags', color='green')
plt.title(f'Anomaly Detection for Test Sample {sample_index + 1}')
plt.xlabel('Time')
plt.ylabel('Anomaly')
plt.yticks([0, 1], ['Normal', 'Anomaly'])
plt.grid(True)


# Adjust layout
plt.tight_layout()
plt.show()


# Print results
print(f"Test Sample {sample_index + 1}:")
print(f"Chunk Errors: {chunk_errors}")
print(f"Anomaly Flags: {anomaly_flags}")
复制代码
Test Sample 1001:
Chunk Errors: [0.09563164519339118, 0.11092163544298601, 0.2256666890943125, 0.16915089415034076, 0.03522613307659271, 0.1806858796623185, 0.19323275294969594]
Anomaly Flags: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

知乎学术咨询:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

担任《Mechanical System and Signal Processing》等审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
Wnq1007210 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴10 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案10 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵10 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower10 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_4461224610 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
CoderYanger11 小时前
C.滑动窗口-求子数组个数-越长越合法——2799. 统计完全子数组的数目
java·c语言·开发语言·数据结构·算法·leetcode·职场和发展
C++业余爱好者11 小时前
Java 提供了8种基本数据类型及封装类型介绍
java·开发语言·python
老蒋新思维11 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
林杜雨都11 小时前
Action和Func
开发语言·c#