【Python机器学习】NLP概述——词序和语法

词的顺序很重要,那些在词序列(如句子)中控制词序的规则被称为语言的语法(也被称为文法)。这是之前的词袋或词向量例子中所丢弃的信息。在大多数简短的短语甚至许多完整的句子中,上述词向量近似方法都可以奏效。如果只是想对一个短句的一般意义和情感进行编码的话,那么词序并不十分重要。看一下一个短句的所有词序结果:

python 复制代码
from itertools import permutations

#原句:Good morning Tom
print(list(" ".join(combo) for combo in permutations("Good morning Tim!".split(),3)))

可以看到,3个单词就可以组成6种不同顺序的句子。

现在,如果试图孤立的解释这些字符串中的每一个,那么可能会得出轮,即这些字符串可能都有相似的意图或含义。

我们再用一个更长、更复杂的短语来尝试一下,这是一条逻辑语句,其中词的顺序非常重要:

python 复制代码
s="""
Find textbooks with titles containing 'NLP',
or 'natural' and 'language', or
'computational' and 'linguistics'.
"""
print(len(s.split()))
print(np.arange(1,12+1).prod())

可以看到,当有14个单词,不同的排列方式会有479001600种。很明显,词序所包含的逻辑对任何希望正确回复的机器来说都很重要。尽管普通的问候语通常不会因为词袋处理而造成混淆,但如果把更复杂的语句放入词袋,就会丢失大部分意思。就像自然语言查询一样,词袋并不是处理数据库查询的最佳方式。

无论语句是用形式化的编程语言(比如SQL)编写的,还是用非形式化的自然语言(如英文)编写的,当语句要表达事物之间的逻辑关系时,词序和语法都非常重要。这就是计算机语言依赖严格的语法和句法规则分析器的原因。幸运的是,自然语言句法树分析器取得了一些最新进展,使得从自然语言中提取出语法和逻辑关系变得可能,并且可以达到显著的准确率(90%以上)。

就像上面有关的问候语的case一样,即使一条语句的逻辑解释并不依赖词序,有时关注词序也可以得到一些十分微妙的相关意义的暗示,这些意义可以辅助更深层次的回复。

相关推荐
狂炫冰美式2 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元3 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI3 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
BBB努力学习程序设计3 小时前
Python面向对象编程:从代码搬运工到架构师
python·pycharm
操练起来3 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
rising start3 小时前
五、python正则表达式
python·正则表达式
KG_LLM图谱增强大模型3 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网3 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp3 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
BBB努力学习程序设计4 小时前
Python错误处理艺术:从崩溃到优雅恢复的蜕变
python·pycharm