【Python机器学习】NLP概述——词序和语法

词的顺序很重要,那些在词序列(如句子)中控制词序的规则被称为语言的语法(也被称为文法)。这是之前的词袋或词向量例子中所丢弃的信息。在大多数简短的短语甚至许多完整的句子中,上述词向量近似方法都可以奏效。如果只是想对一个短句的一般意义和情感进行编码的话,那么词序并不十分重要。看一下一个短句的所有词序结果:

python 复制代码
from itertools import permutations

#原句:Good morning Tom
print(list(" ".join(combo) for combo in permutations("Good morning Tim!".split(),3)))

可以看到,3个单词就可以组成6种不同顺序的句子。

现在,如果试图孤立的解释这些字符串中的每一个,那么可能会得出轮,即这些字符串可能都有相似的意图或含义。

我们再用一个更长、更复杂的短语来尝试一下,这是一条逻辑语句,其中词的顺序非常重要:

python 复制代码
s="""
Find textbooks with titles containing 'NLP',
or 'natural' and 'language', or
'computational' and 'linguistics'.
"""
print(len(s.split()))
print(np.arange(1,12+1).prod())

可以看到,当有14个单词,不同的排列方式会有479001600种。很明显,词序所包含的逻辑对任何希望正确回复的机器来说都很重要。尽管普通的问候语通常不会因为词袋处理而造成混淆,但如果把更复杂的语句放入词袋,就会丢失大部分意思。就像自然语言查询一样,词袋并不是处理数据库查询的最佳方式。

无论语句是用形式化的编程语言(比如SQL)编写的,还是用非形式化的自然语言(如英文)编写的,当语句要表达事物之间的逻辑关系时,词序和语法都非常重要。这就是计算机语言依赖严格的语法和句法规则分析器的原因。幸运的是,自然语言句法树分析器取得了一些最新进展,使得从自然语言中提取出语法和逻辑关系变得可能,并且可以达到显著的准确率(90%以上)。

就像上面有关的问候语的case一样,即使一条语句的逻辑解释并不依赖词序,有时关注词序也可以得到一些十分微妙的相关意义的暗示,这些意义可以辅助更深层次的回复。

相关推荐
政安晨1 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
冷雨夜中漫步7 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
郝学胜-神的一滴8 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再8 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗9 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo