机器学习-识别手写数字

机器学习可以首先构建一个神经网络,用于识别手写数字。通过训练数据,优化神经网络的参数。再利用测试数据来测试训练完成后的神经网络的准确度。本次需要下载的库有tensorflow和matplotlib,keras和mnist数据集一般都被集成在tensorflow中了。

MNIST手写数字数据

首先查看一下MNIST手写数字的数据是什么样子的。

python 复制代码
from tensorflow.keras.datasets import mnist

# 读取MNIST数据
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# 查看训练数据
train_images.shape()

# 查看训练数据的标签
len(train_labels)
train_labels
复制代码
# 训练数据
(60000, 28, 28)

# 训练标签
60000
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

从上面可以看出,MNIST手写数字的数据,是28*28的灰度图片,并且在训练数据中,有一共60000张这样的手写数字图片。在训练标签中,一共有60000个对应的数字,作为训练数据的标签。

可以利用matplot去查看这些28*28的图片是什么样子。

python 复制代码
import matplotlib.pyplot as plt

plt.imshow(train_images[0], cmap='binary')
plt.show

可以清晰的看到,这个手写数字图片由28*28个像素组成,并且每个像素深度在0-255之间,组成的像素表达了一个人眼可以分辨的数字5。然而机器无法直接读取出这个数字,而是通过读取每个像素的数据,根据训练好的模型才能给出结果。

构建神经网络

python 复制代码
model = keras.Sequential([
    layers.Flatten(input_shape=(28, 28)),  # Flatten the input image to a vector of size 784
    layers.Dense(512, activation="relu"),
    layers.Dense(10, activation="softmax")
])

model.compile(optimizer="rmsprop",
              loss="sparse_categorical_crossentropy",
              metrics=["accuracy"])

在这里可以看出,这个神经网络的结构比较简单,一共有三层。输入层,将28*28的矩阵展平为一维向量,并输入给第二层计算。第二层是一个激活函数为ReLU函数并含有512个节点的隐藏层。第三层输出层,激活函数为softmax用于多分类问题。而10个节点,也就代表了从零到九的十个数字。可以看出这个神经网络就是为了解决一个十种可能的多分类问题。

训练神经网络

在利用刚刚读取的MNIST手写数字数据集,对刚刚构建的神经网络进行训练

python 复制代码
# 将数据缩小到0-1,有利于神经网络的快速计算和训练
train_images = train_images.astype("float32") / 255
test_images = test_images.astype("float32") / 255

model.fit(train_images, train_labels, epochs=5, batch_size=128)
复制代码
Epoch 1/5
469/469 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8727 - loss: 0.4416
Epoch 2/5
469/469 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9664 - loss: 0.1143
Epoch 3/5
469/469 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9795 - loss: 0.0703
Epoch 4/5
469/469 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9841 - loss: 0.0521
Epoch 5/5
469/469 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9892 - loss: 0.0369

可以看出随着五次的训练,准确率升高非常迅速,损失值也在减小。

预测结果

五个批次全部训练完成后,可以根据测试数据,来对神经网络的准确性进行判断。

python 复制代码
predictions = model.predict(test_images)

# 查看第一个测试数据的图像
plt.imshow(test_images[0], cmap='binary')
plt.show()

# 查看模型的预测结果
print(predictions[0])

# 查看模型预测结果,最可能的值
print(predictions[0].argmax())

# 查看正确的标签
print(test_labels[0])
复制代码
313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  
[2.4641224e-08 1.5685966e-08 4.7843769e-06 6.2090970e-05 5.8346529e-11
 9.6760395e-08 7.8394131e-11 9.9992907e-01 3.8257639e-08 3.8722346e-06]
7
7

在这里首先输出了模型的预测结果,是从0到9的可能性。模型的最后预测结果是7最大,所以输出了7,与正确的标签一致。

相关推荐
cmoaciopm21 分钟前
Obsidian和Ollama大语言模型的交互过程
人工智能·语言模型
努力进修24 分钟前
【金仓数据库征文】-金仓数据库性能调优 “快准稳” 攻略:实战优化,让数据处理飞起来
数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓
小oo呆4 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar4 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle4 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术5 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
Y1nhl5 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰5 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
yuanlaile5 小时前
AI大模型自然语言处理能力案例演示
人工智能·ai·自然语言处理
小白白搭建5 小时前
WordPress AI 原创文章自动生成插件 24小时全自动生成SEO原创文章 | 多语言支持 | 智能配图与排版
人工智能