02_TensorFlow2 Eager Execution:让AI编程从‘慢条斯理’变‘急不可耐’的神奇魔法!

1. Eager execution 的特性

即刻执行(Eager execution)是TensorFlow2.0的新特性,如同python解释器一样,执行即可获得计算结果,不需要手动建立图结构和会话,与python的兼容性更强, 为快速搭建和测试算法模型提供了便利。

2. 特性介绍

tensorflow 2.0 默认是 Eager execution 模式

eager 模式对 numpy 的支持很友好,具体如下:

  • numpy 的操作可以接受 Tensor 作为参数
  • Tensorflow 的数学操作会将 Python 对象和 Numpy 的 arrays 转换成 Tensor
  • tf.Tensor.numpy 方法返回 numpy 的 ndarry

可逐行动态控制流,逐行控制代码的运行

一切皆函数,无须手动搭建 tensorflow 数据结构

3. 相关API

3.1 即刻输出

python 复制代码
# 导入Tensorflow
import tensorflow as tf
# 创建张量
scalar_tf = tf.constant(3.14)
# 执行操作
m = tf.add(scalar_tf, scalar_tf)
# 输出操作结果
m
复制代码
<tf.Tensor: shape=(), dtype=float32, numpy=6.28>

3.2 状态查看和启动

默认情况下,Eager execution处于启用状态,可以用tf.executing_eargerly()查看Eager Execution当前的启动状态,返回True则是开启,False是关闭。可以用tf.compat.v1.enable_eager_execution()启动eager模式。

python 复制代码
# 查看Eager Execution当前的启动状态
tf.executing_eagerly()
复制代码
True

3.4 关闭与启动 eager 模式

关闭 eager 模式的函数是 tf.compat.v1.disable_eager_ececution()

启动 eager 模式的函数是 tf.compat.v1.enable_eager_execution()

python 复制代码
# 默认是开启的,先关闭
tf.compat.v1.disable_eager_execution()
# 查看状态
tf.compat.v1.executing_eagerly()
复制代码
False
python 复制代码
# 开启 eager 模式
tf.compat.v1.enable_eager_execution()
# 查看状态
tf.compat.v1.executing_eagerly()
复制代码
True
相关推荐
羑悻的小杀马特44 分钟前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi4 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5896 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe7 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
ZStack开发者社区7 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算
Spcarrydoinb8 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉