02_TensorFlow2 Eager Execution:让AI编程从‘慢条斯理’变‘急不可耐’的神奇魔法!

1. Eager execution 的特性

即刻执行(Eager execution)是TensorFlow2.0的新特性,如同python解释器一样,执行即可获得计算结果,不需要手动建立图结构和会话,与python的兼容性更强, 为快速搭建和测试算法模型提供了便利。

2. 特性介绍

tensorflow 2.0 默认是 Eager execution 模式

eager 模式对 numpy 的支持很友好,具体如下:

  • numpy 的操作可以接受 Tensor 作为参数
  • Tensorflow 的数学操作会将 Python 对象和 Numpy 的 arrays 转换成 Tensor
  • tf.Tensor.numpy 方法返回 numpy 的 ndarry

可逐行动态控制流,逐行控制代码的运行

一切皆函数,无须手动搭建 tensorflow 数据结构

3. 相关API

3.1 即刻输出

python 复制代码
# 导入Tensorflow
import tensorflow as tf
# 创建张量
scalar_tf = tf.constant(3.14)
# 执行操作
m = tf.add(scalar_tf, scalar_tf)
# 输出操作结果
m
复制代码
<tf.Tensor: shape=(), dtype=float32, numpy=6.28>

3.2 状态查看和启动

默认情况下,Eager execution处于启用状态,可以用tf.executing_eargerly()查看Eager Execution当前的启动状态,返回True则是开启,False是关闭。可以用tf.compat.v1.enable_eager_execution()启动eager模式。

python 复制代码
# 查看Eager Execution当前的启动状态
tf.executing_eagerly()
复制代码
True

3.4 关闭与启动 eager 模式

关闭 eager 模式的函数是 tf.compat.v1.disable_eager_ececution()

启动 eager 模式的函数是 tf.compat.v1.enable_eager_execution()

python 复制代码
# 默认是开启的,先关闭
tf.compat.v1.disable_eager_execution()
# 查看状态
tf.compat.v1.executing_eagerly()
复制代码
False
python 复制代码
# 开启 eager 模式
tf.compat.v1.enable_eager_execution()
# 查看状态
tf.compat.v1.executing_eagerly()
复制代码
True
相关推荐
KG_LLM图谱增强大模型18 分钟前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd1 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白1 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(二)词嵌入模型原理
深度学习·ai
小程故事多_802 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20202 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid3 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
Cemtery1163 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习
zxsz_com_cn3 小时前
预测性维护在智能制造设备上的实际应用
人工智能
一条闲鱼_mytube3 小时前
智能体设计模式(三)多智能体协作-记忆管理-学习与适应
人工智能·学习·设计模式