代码随想录训练营day25|491.递增子序列,46.全排列,47.全排列 II

递增子序列

题目

本题的难点在于细节上的处理:

1.大于=2时才能加入

2.不能排序,如何做到树层去重

cpp 复制代码
void backtracking(vector<int> nums,int startindex){
	if(path.size()>=2)
		result.push_back(path);
	//都是在结点处处理
	if(startindex==nums.size())
		return;
	unordered_set<int> usedset;
	//用set来记录树层中遍历过的
	for(int i=startindex;i<nums.size();i++){
		if((!path.empty()&&path.back()>nums[i])||usedset.find(nums[i])!=usedset.end())
		//如果当前的比path中的末尾大/出现过,就接着往下选
		{
			continue;		
		}
		usedset.insert(nums[i]);
		path.push_back(nums[i]);
		backtracking(nums,i+1);
		path.pop_back();
	}
}

关于set

要在每一层都设立一个新的set,这样在递归到下一层时并不会有影响,而在同一层的则可以实现去重

全排列

题目

在组合问题中,为了防止统计重复过的元素,我们用了startindex来判断位置起点。

而排列问题1,2;2,1是两种不同的答案,并不需要从遍历过的地方的下一个位置开始,

所以

for(int i=0;;)

面对排列问题可以用used数组来记录那些地方遍历过。

cpp 复制代码
 void backtracking(vector<int> nums,vector<int>used){
        if(path.size()==nums.size()){
            result.push_back(path);
            return;
        }
        for(int i=0;i<nums.size();i++){
            if(used[i]==1)
                continue;
            used[i]=1;
            path.push_back(nums[i]);
            backtracking(nums,used);
            path.pop_back();
            used[i]=0;
        }
    }

全排列2

题目

这题的区别就是需要做数层上的去重

数层上的去重有两种方法:

1.在每一层都定义一个set,如果能在本层的set中找到说明这层中已经有该数字,continue

2.看nums[i]==nums[i-1],但这样判断在这里有一个难点:同层和同枝都可以满足这个。

前面组合用这个判断的时候已经去除了遍历过的元素,比如1,1,2;在i=1时它的startindex也是1。

但是在这里没一次都是从0开始,所以可以将它进行排序,如果还满足i-1没有被用过,则说明是同层

第一种写法

cpp 复制代码
 void backtracking(vector<int>nums,vector<int> used){
        if(path.size()==nums.size()){
            result.push_back(path);
            return;
        }
        set<int> ceng;
        for(int i=0;i<nums.size();i++){
            if(used[i]==1||ceng.find(nums[i])!=ceng.end())
                continue;
            used[i]=1;
            ceng.insert(nums[i]);
            path.push_back(nums[i]);
            backtracking(nums,used);
            path.pop_back();
            used[i]=0;
            
        }
    }

第二种写法

cpp 复制代码
vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>nums,vector<int> used){
        if(path.size()==nums.size()){
            result.push_back(path);
            return;
        }
        for(int i=0;i<nums.size();i++){
            if((i>0&&nums[i]==nums[i-1])&&used[i-1]==0)
                continue;
            if(used[i]==1)
                continue;
            used[i]=1;
            path.push_back(nums[i]);
            backtracking(nums,used);
            path.pop_back();
            used[i]=0;
            
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        vector<int> used(nums.size());
        backtracking(nums,used);
        return result;
    }
相关推荐
顾子茵16 分钟前
c++从入门到精通(五)--异常处理,命名空间,多继承与虚继承
开发语言·c++
冲帕Chompa1 小时前
图论part10 bellman_ford算法
数据结构·算法·图论
緈福的街口1 小时前
【leetcode】144. 二叉树的前序遍历
算法·leetcode
GG不是gg1 小时前
排序算法之基础排序:冒泡,选择,插入排序详解
数据结构·算法·青少年编程·排序算法
随意起个昵称1 小时前
【双指针】供暖器
算法
倒霉蛋小马1 小时前
最小二乘法拟合直线,用线性回归法、梯度下降法实现
算法·最小二乘法·直线
YueiL2 小时前
基于RK3588的智慧农场系统开发|RS485总线|华为云IOT|node-red|MQTT
c++·物联网·华为云·rk3588·rs485
二进制人工智能2 小时前
【OpenGL学习】(二)OpenGL渲染简单图形
c++·opengl
codists2 小时前
《算法导论(第4版)》阅读笔记:p82-p82
算法
埃菲尔铁塔_CV算法2 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新
深度学习·算法·目标检测