【OpenCV】 中使用 Lucas-Kanade 光流进行对象跟踪和路径映射

文章目录

  • 一、说明
  • [二、什么是Lucas-Kanade 方法](#二、什么是Lucas-Kanade 方法)
  • [三、Lucas-Kanade 原理](#三、Lucas-Kanade 原理)
  • 四、代码实现
    • [4.1 第 1 步:用户在第一帧绘制一个矩形](#4.1 第 1 步:用户在第一帧绘制一个矩形)
    • [4.2 第 2 步:从图像中提取关键点](#4.2 第 2 步:从图像中提取关键点)
    • [4.3 第 3 步:跟踪每一帧的关键点](#4.3 第 3 步:跟踪每一帧的关键点)

一、说明

本文针对基于光流法的目标追踪进行叙述,首先介绍Lucas-Kanade 方法的引进,以及基本推导,然后演示如何实现光流法的运动跟踪。并以OpenCV实现一个基本项目。

二、什么是Lucas-Kanade 方法

在计算机视觉领域,Lucas-Kanade 方法是 Bruce D. Lucas 和Takeo Kanade开发的一种广泛使用的光流估计差分方法。该方法假设所考虑像素局部邻域中的光流基本恒定,并根据最小二乘准则求解该邻域中所有像素的基本光流方程。

通过结合来自多个邻近像素的信息,Lucas-Kanade 方法通常可以解决光流方程固有的模糊性。与逐点方法相比,该方法对图像噪声的敏感度也较低。另一方面,由于它是一种纯局部方法,因此无法提供图像均匀区域内部的流信息。

三、Lucas-Kanade 原理

在理论上,初始时间为 t 0 t_0 t0 时刻,经历过 Δ t \Delta t Δt时段后,点p会移动到另一个位置 p ′ p′ p′ ,并且 p ′ p′ p′ 本身和周围都有着与p相似的亮度值。朴素的LK光流法是直接用灰度值代替RGB作为亮度。根据上面的描述,对于点p而言,假设p 的坐标值是( x , y ),有
I ( x , y , t ) = I ( x + Δ x , y + Δ y , t + Δ t ) I(x, y, t) = I(x+\Delta x,y+\Delta y, t+\Delta t) I(x,y,t)=I(x+Δx,y+Δy,t+Δt)

根据泰勒公式:在这里把x 、y 看做是t 的函数,把公式(1)看做单变量t 的等式,只需对t进行展开)
I ( x , y , t ) = I ( x , y , t ) + ∂ I ∂ x ∂ x ∂ t + ∂ I ∂ y ∂ y ∂ t + ∂ I ∂ t + o ( Δ t ) I(x,y,t)=I(x,y,t)+\frac{∂I} {∂x}\frac{∂x}{∂t}+\frac{∂I} {∂y}\frac{∂y}{∂t}+\frac{∂I} {∂t}+o(Δt) I(x,y,t)=I(x,y,t)+∂x∂I∂t∂x+∂y∂I∂t∂y+∂t∂I+o(Δt)

对于一个像素区域:
I x ( q 1 ) V x + I y ( q 1 ) V x = − I t ( q 1 ) I x ( q 2 ) V x + I y ( q 2 ) V x = − I t ( q 2 ) . . . I x ( q n ) V x + I y ( q n ) V x = − I t ( q n ) I_x(q_1)V_x+I_y(q_1)V_x=-I_t(q_1)\\I_x(q_2)V_x+I_y(q_2)V_x=-I_t(q_2)\\...\\I_x(q_n)V_x+I_y(q_n)V_x=-I_t(q_n) Ix(q1)Vx+Iy(q1)Vx=−It(q1)Ix(q2)Vx+Iy(q2)Vx=−It(q2)...Ix(qn)Vx+Iy(qn)Vx=−It(qn)

在这里: q 1 , q 2 , . . . q n q_1,q_2,...q_n q1,q2,...qn是窗口内点的标号, I x ( q i ) I_x(q_i) Ix(qi), I y ( q i ) I_y(q_i) Iy(qi), I t ( q i ) I_t(q_i) It(qi)是图像的灰度偏导数,

这些方程可以写成矩阵形式:
A v = b Av=b Av=b

这个系统的方程多于未知数,因此它通常是过度确定的。Lucas-Kanade方法通过最小二乘原理得到折衷解。也就是说,它解决了2×2系统:


因此

四、代码实现

4.1 第 1 步:用户在第一帧绘制一个矩形

bash 复制代码
# Path to video  
video_path="videos/bicycle1.mp4" 
video = cv2.VideoCapture(video_path)

# read only the first frame for drawing a rectangle for the desired object
ret,frame = video.read()

# I am giving  big random numbers for x_min and y_min because if you initialize them as zeros whatever coordinate you go minimum will be zero 
x_min,y_min,x_max,y_max=36000,36000,0,0


def coordinat_chooser(event,x,y,flags,param):
    global go , x_min , y_min, x_max , y_max

    # when you click the right button, it will provide coordinates for variables
    if event==cv2.EVENT_RBUTTONDOWN:
        
        # if current coordinate of x lower than the x_min it will be new x_min , same rules apply for y_min 
        x_min=min(x,x_min) 
        y_min=min(y,y_min)

         # if current coordinate of x higher than the x_max it will be new x_max , same rules apply for y_max
        x_max=max(x,x_max)
        y_max=max(y,y_max)

        # draw rectangle
        cv2.rectangle(frame,(x_min,y_min),(x_max,y_max),(0,255,0),1)


    """
        if you didn't like your rectangle (maybe if you made some misclicks),  reset the coordinates with the middle button of your mouse
        if you press the middle button of your mouse coordinates will reset and you can give a new 2-point pair for your rectangle
    """
    if event==cv2.EVENT_MBUTTONDOWN:
        print("reset coordinate  data")
        x_min,y_min,x_max,y_max=36000,36000,0,0

cv2.namedWindow('coordinate_screen')
# Set mouse handler for the specified window, in this case, "coordinate_screen" window
cv2.setMouseCallback('coordinate_screen',coordinat_chooser)


while True:
    cv2.imshow("coordinate_screen",frame) # show only first frame 
    
    k = cv2.waitKey(5) & 0xFF # after drawing rectangle press ESC   
    if k == 27:
        cv2.destroyAllWindows()
        break


cv2.destroyAllWindows()

4.2 第 2 步:从图像中提取关键点

bash 复制代码
# take region of interest ( take inside of rectangle )
roi_image=frame[y_min:y_max,x_min:x_max]

# convert roi to grayscale
roi_gray=cv2.cvtColor(roi_image,cv2.COLOR_BGR2GRAY) 

# Params for corner detection
feature_params = dict(maxCorners=20,  # We want only one feature
                      qualityLevel=0.2,  # Quality threshold 
                      minDistance=7,  # Max distance between corners, not important in this case because we only use 1 corner
                      blockSize=7)

first_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

# Harris Corner detection
points = cv2.goodFeaturesToTrack(first_gray, mask=None, **feature_params)


# Filter the detected points to find one within the bounding box
for point in points:
    x, y = point.ravel()
    if y_min <= y <= y_max and x_min <= x <= x_max:
        selected_point = point
        break

# If a point is found, convert it to the correct shape
if selected_point is not None:
    p0 = np.array([selected_point], dtype=np.float32)

plt.imshow(roi_gray,cmap="gray")

将从此图像中提取关键点

4.3 第 3 步:跟踪每一帧的关键点

bash 复制代码
############################ Parameters ####################################

""" 
winSize --> size of the search window at each pyramid level
Smaller windows can more precisely track small, detailed features -->   slow or subtle movements and where fine detail tracking is crucial.
Larger windows is better for larger displacements between frames ,  more robust to noise and small variations in pixel intensity --> require more computations
"""

# Parameters for Lucas-Kanade optical flow
lk_params = dict(winSize=(7, 7),  # Window size
                 maxLevel=2,  # Number of pyramid levels
                 criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))


############################ Algorithm ####################################

# Read video
cap = cv2.VideoCapture(video_path)

# Take first frame and find corners in it
ret, old_frame = cap.read()

width = old_frame.shape[1]
height = old_frame.shape[0]

# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)

frame_count = 0
start_time = time.time()

old_gray = first_gray

while True:
    ret, frame = cap.read()
    if not ret:
        break

    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    if p0 is not None:
        # Calculate optical flow
        p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)  
        good_new = p1[st == 1]  # st==1 means found point
        good_old = p0[st == 1]


        if len(good_new) > 0:
            # Calculate movement
            a, b = good_new[0].ravel()
            c, d = good_old[0].ravel()
 
            # Draw the tracks
            mask = cv2.line(mask, (int(a), int(b)), (int(c), int(d)), (0, 255, 0), 2)
            frame = cv2.circle(frame, (int(a), int(b)), 5, (0, 255, 0), -1)

            img = cv2.add(frame, mask)

            # Calculate and display FPS
            elapsed_time = time.time() - start_time
            fps = frame_count / elapsed_time if elapsed_time > 0 else 0
            cv2.putText(img, f"FPS: {fps:.2f}", (width - 200, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

            cv2.imshow('frame', img)

            # Update previous frame and points
            old_gray = frame_gray.copy()
            p0 = good_new.reshape(-1, 1, 2)

        else:
            p0 = None

        # Check if the tracked point is out of frame
        if not (25 <= a < width):
            p0 = None  # Reset p0 to None to detect new feature in the next iteration
            selected_point_distance = 0  # Reset selected point distance when new point is detected


    # Redetect features if necessary
    if p0 is None:
        p0 = cv2.goodFeaturesToTrack(frame_gray, mask=None, **feature_params)
        mask = np.zeros_like(frame)
        selected_point_distance=0
 
    frame_count += 1

    k = cv2.waitKey(25)
    if k == 27:
        break

 
cv2.destroyAllWindows()
cap.release()

结果

相关推荐
AKAMAI5 小时前
云成本困境:开支激增正阻碍欧洲AI创新
人工智能·云原生·云计算
大模型真好玩6 小时前
LangGraph实战项目:从零手搓DeepResearch(一)——DeepResearch应用体系详细介绍
人工智能·python·mcp
IT古董6 小时前
【第五章:计算机视觉-项目实战之生成式算法实战:扩散模型】3.生成式算法实战:扩散模型-(4)在新数据集上微调现有扩散模型
人工智能
嵌入式-老费6 小时前
Easyx图形库使用(潜力无限的图像处理)
图像处理·人工智能
JXY_AI6 小时前
AI问答与搜索引擎:信息获取的现状
人工智能·搜索引擎
B站_计算机毕业设计之家6 小时前
Python+Flask+Prophet 汽车之家二手车系统 逻辑回归 二手车推荐系统 机器学习(逻辑回归+Echarts 源码+文档)✅
大数据·人工智能·python·机器学习·数据分析·汽车·大屏端
XXX-X-XXJ7 小时前
三、从 MinIO 存储到 OCR 提取,再到向量索引生成
人工智能·后端·python·ocr
AI人工智能+7 小时前
行驶证识别技术通过OCR和AI实现信息自动化采集与处理,涵盖图像预处理、文字识别及结构化校验,提升效率与准确性
人工智能·深度学习·ocr·行驶证识别
EkihzniY7 小时前
医疗发票 OCR 识别:打通医疗费用处理 “堵点” 的技术助手
大数据·人工智能·ocr
慷仔7 小时前
游戏编程模式-享元模式(Flyweight)
人工智能·游戏·享元模式