词向量(One-Hot Encoding、Word Embedding、Word2Vec)

词向量,顾名思义,用向量表示单词。

1、One-Hot Encoding

One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。

python 代码示例:

python 复制代码
from sklearn import preprocessing  
   
enc = preprocessing.OneHotEncoder()  
enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]])  # 训练。这里共有4个数据,3种特征
   
array = enc.transform([[0,1,3]]).toarray()  # 测试。这里使用1个新数据来测试
   
print array   # [[ 1  0  0  1  0  0  0  0  1]] # 独热编码结果

*后面参考文献有对代码进行解释

使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。

2、Word Embedding

由于 One-Hot Encoding 表示的词向量无法解决词之间相似性问题(即词与词之间的关系)。

然而,通过 One-Hot Encoding 表示的词向量输入神经网络语言模型中,得到新的词向量可以解决词之间相似性问题(即可以采用余弦相似度等方法计算两个词之间的相似度)。

Word Embedding 例子:

当一个单词表达成 Word Embedding 后,很容易找出语义相近的其它词汇。

3、Word2Vec

Word2Vec 是 Word Embedding 语言模型之一。

Word2Vec 有两种训练方法:

第一种叫 CBOW,核心思想是从一个句子里面把一个词抠掉,用这个词的上文和下文去预测被抠掉的这个词;

第二种叫做 Skip-gram,和 CBOW 正好反过来,输入某个单词,要求网络预测它的上下文单词。

REFERENCE

数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码
机器学习数据预处理1:独热编码(One-Hot)及其代码
机器学习之独热编码(One-Hot)详解(代码解释)

相关推荐
ISACA中国几秒前
《第四届数字信任大会》精彩观点:针对AI的攻击技术(MITRE ATLAS)与我国对AI的政策导向解读
人工智能·ai·政策解读·国家ai·风险评估工具·ai攻击·人工智能管理
Coding茶水间2 分钟前
基于深度学习的PCB缺陷检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
绫语宁18 分钟前
以防你不知道LLM小技巧!为什么 LLM 不适合多任务推理?
人工智能·后端
霍格沃兹测试开发学社-小明19 分钟前
AI来袭:自动化测试在智能实战中的华丽转身
运维·人工智能·python·测试工具·开源
大千AI助手27 分钟前
Softmax函数:深度学习中的多类分类基石与进化之路
人工智能·深度学习·机器学习·分类·softmax·激活函数·大千ai助手
韩曙亮30 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ② ( 深度学习 -> 机器视觉 )
人工智能·深度学习·学习·ai·机器视觉
九千七52634 分钟前
sklearn学习(3)数据降维
人工智能·python·学习·机器学习·sklearn
黑客思维者38 分钟前
Salesforce Einstein GPT 人机协同运营的核心应用场景与工作流分析
人工智能·gpt·深度学习·salesforce·rag·人机协同·einstein gpt
玦尘、1 小时前
《统计学习方法》第5章——决策树(上)【学习笔记】
决策树·机器学习
多恩Stone1 小时前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc