词向量(One-Hot Encoding、Word Embedding、Word2Vec)

词向量,顾名思义,用向量表示单词。

1、One-Hot Encoding

One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。

python 代码示例:

python 复制代码
from sklearn import preprocessing  
   
enc = preprocessing.OneHotEncoder()  
enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]])  # 训练。这里共有4个数据,3种特征
   
array = enc.transform([[0,1,3]]).toarray()  # 测试。这里使用1个新数据来测试
   
print array   # [[ 1  0  0  1  0  0  0  0  1]] # 独热编码结果

*后面参考文献有对代码进行解释

使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。

2、Word Embedding

由于 One-Hot Encoding 表示的词向量无法解决词之间相似性问题(即词与词之间的关系)。

然而,通过 One-Hot Encoding 表示的词向量输入神经网络语言模型中,得到新的词向量可以解决词之间相似性问题(即可以采用余弦相似度等方法计算两个词之间的相似度)。

Word Embedding 例子:

当一个单词表达成 Word Embedding 后,很容易找出语义相近的其它词汇。

3、Word2Vec

Word2Vec 是 Word Embedding 语言模型之一。

Word2Vec 有两种训练方法:

第一种叫 CBOW,核心思想是从一个句子里面把一个词抠掉,用这个词的上文和下文去预测被抠掉的这个词;

第二种叫做 Skip-gram,和 CBOW 正好反过来,输入某个单词,要求网络预测它的上下文单词。

REFERENCE

数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码
机器学习数据预处理1:独热编码(One-Hot)及其代码
机器学习之独热编码(One-Hot)详解(代码解释)

相关推荐
信也科技布道师3 分钟前
当AMIS遇见AI智能体:如何为低代码开发装上“智慧大脑”?
人工智能·低代码
szxinmai主板定制专家15 分钟前
柔宇柔性显示屏+x86、arm显示解决方案,还有库存
arm开发·人工智能·fpga开发
一个处女座的程序猿18 分钟前
AI之PaperTool:Aella Science Dataset Explorer(LAION )的简介、安装和使用方法、案例应用之详细攻略
人工智能·papertool·aella science
冴羽19 分钟前
一次找齐!1000 个 Nano Banana Pro 提示词
人工智能·aigc·gemini
reddingtons1 小时前
Illustrator 3D Mockup:零建模,矢量包装一键“上架”实拍
人工智能·ui·3d·aigc·illustrator·设计师·平面设计
孟祥_成都1 小时前
前端角度学 AI - 15 分钟入门 Python
前端·人工智能
Java中文社群1 小时前
太顶了!全网最全的600+图片生成玩法!
人工智能
阿里云大数据AI技术1 小时前
EMR AI 助手开启公测:用 AI 重塑大数据运维,更简单、更智能
人工智能
言之。2 小时前
AI时代的UI发展
人工智能·ui
拖拖7652 小时前
从“死”文档到“活”助手:Paper2Agent 如何将科研论文一键转化为可执行 AI
人工智能