GPT-4、Claude 3 Opus 和 Gemini 1.0 Ultra 挑战控制工程的新领域

介绍

论文地址:https://arxiv.org/abs/2404.03647

近年来,GPT-4、Claude 3 Opus 和 Gemini 1.0 Ultra 等大规模语言模型(LLM)迅速发展,展示了它们解决复杂问题的能力。LLM 的这些发展在多个领域都有潜在的应用前景。

最显著的应用之一是控制工程。控制工程是一个涉及数学理论和设计的领域,有可能利用 LLM 的高级推理能力。然而,人们对 LLM 解决控制问题的能力还不完全了解。

因此,本研究旨在确定最先进的 LLM 在多大程度上可以解决大学级别的控制问题。作者开发了一个涵盖基础和应用控制工程的基准数据集 ControlBench,并全面评估了 GPT-4、Claude 3 Opus 和 Gemini 1.0 Ultra 这三个模型的性能。

这一举措有望凸显 LLM 在控制工程领域的潜力和局限性,并为人工智能与控制工程的未来融合提供重要见解。

相关研究

开发 ControlBench 数据集

作者构建了一个 ControlBench 数据集,涵盖了大学级别的控制问题。该数据集涵盖控制工程的多个领域,包括稳定性、瞬态响应、方框图、控制系统设计、波特图和奈奎斯特图。该数据集还包括需要可视化信息的问题,旨在全面评估 LLM 的分析能力。

ControlBench 数据收集自教科书和在线资料,并以 LaTeX 格式整理。每个问题还提供了详细的答案和解释,可用于评估 LLM 的性能。

评估 LLM 解决控制问题的能力

上图显示了 GPT-4 和 Claude 3 Opus 的错误类型和百分比;定义了七种错误模式,并对其百分比进行了比较。

首先,可以看出 GPT-4 的主要挑战在于其 "有限的推理能力"。换句话说,从逻辑上解释控制问题并推导出正确的解决方案被认为是 GPT-4 的弱点。

另一方面,Claude 3 Opus 面临的最大挑战是 "计算错误"。它似乎很容易在数学处理方面出错,如公式的转换和数字计算的准确性。

然而,两者之间的比较表明,Claude 3 Opus 因 "推理能力有限 "而出现的错误较少。这说明,在对控制理论的理解和推理能力方面,Claude 3 Opus 更胜一筹。

因此,利用图 1 对每种 LLM 的优势和挑战进行定量比较和分析,可以清楚地表明 LLM 解决控制问题能力的特点。这一分析结果是将 LLM 应用于控制工程的重要发现。

关于 ControlBench-C 的建议

使用 ControlBench 进行的详细评估很有意义,但对于非控制工程专家来说,难度偏高。因此,作者提出了一个更简单的版本,即 ControlBench-C。

ControlBench-C 以单选题取代了 100 道 ControlBench 题目。通过这种形式,无需控制工程方面的专业知识,就能快速自动地评估 LLM 的反应。

ControlBench-C 要求用户输入 LLM 选项的答案及其推理,并计算正确答案百分比(ACC)和自我修正后的正确答案百分比(ACC-s)。通过这种方法,非控制专家可以了解 LLM 解决控制问题的基本能力。

ControlBench-C 的定位是 ControlBench 的补充:ControlBench 提供详细的见解,而 ControlBench-C 的特点是能够进行简单的自动评估。预计在未来的研究中,两者将分别使用。

结论

本文开创性地研究了大规模语言模型(LLM)在控制工程中的适用性。作者开发了一个名为 ControlBench 的基准数据集,并用三种 LLM(GPT-4、Claude 3 Opus 和 Gemini 1.0 Ultra)对其进行了评估。

结果表明,Claude 3 Opus 在解决控制问题方面表现最佳。另一方面,也证实了 LLMs 仍存在一些问题,如处理需要视觉信息的问题和计算错误的问题。

相关推荐
大数据张老师17 分钟前
用 AI 做数据分析:从“数字”里挖“规律”
大数据·人工智能
音视频牛哥1 小时前
如何打造毫秒级响应的RTSP播放器:架构拆解与实战优化指南
人工智能·机器人·音视频开发
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | NoCode-bench:评估LLM无代码功能添加能力的新基准
论文阅读·人工智能·软件工程
go54631584651 小时前
Python点阵字生成与优化:从基础实现到高级渲染技术
开发语言·人工智能·python·深度学习·分类·数据挖掘
Coovally AI模型快速验证1 小时前
避开算力坑!无人机桥梁检测场景下YOLO模型选型指南
人工智能·深度学习·yolo·计算机视觉·目标跟踪·无人机
巫婆理发2222 小时前
神经网络(第二课第一周)
人工智能·深度学习·神经网络
欧阳小猜2 小时前
OpenCV-图像预处理➁【图像插值方法、边缘填充策略、图像矫正、掩膜应用、水印添加,图像的噪点消除】
人工智能·opencv·计算机视觉
旭日东升的xu.2 小时前
OpenCV(04)梯度处理,边缘检测,绘制轮廓,凸包特征检测,轮廓特征查找
人工智能·opencv·计算机视觉
liliangcsdn2 小时前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
qyhua2 小时前
Windows 平台源码部署 Dify教程(不依赖 Docker)
人工智能·windows·python