论文笔记:Large Language Models are Zero-Shot Next LocationPredictors

1 intro

  • 下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。
    • NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理
  • NL 问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。
    • 然而,这些方法并不具备地理转移能力
    • 因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降
    • 尽管已经做出努力改善地理转移性,但主要的进展还是与集体移动模式相关,而零样本的地理独立性仍未得到解决
  • 此外,已经显示出大型语言模型(LLMs)嵌入了空间和地理知识,并且这些知识可以被有效提取
  • ------>探索将 LLMs 作为零样本下一个地点预测器的使用
    • 评估了四个 LLMs 的性能:Llama2、Llama2 Chat、GPT-3.5和 Mistral
    • 同时讨论了其他一些 LLMs、Phi-2、Phi-3、Gemma、GPT-J、Dolly的一些限制

2 preliminary

2.1 任务定义

  • 下一个地点预测通常定义为根据个体的历史移动轨迹预测其下一个将访问的地点的问题,这些轨迹通常表示为时空轨迹
    • (轨迹)时空点 p = (t, l) 是一个元组,其中 t 表示时间戳,l 表示地理位置。轨迹 P = p1, p2, ..., pn 是个体访问的 n 个时空点的时间有序序列
      • 根据 DeepMove的方法筛选轨迹
        • 筛选出记录少于 10 条的用户
        • 选择了 72 小时的间隔作为区分不同轨迹的阈值
        • 任何拥有少于五条轨迹的用户都被排除在分析之外
    • 用户的每条轨迹 P 都由历史访问H(history)和情境C(context)访问组成

2.2 数据集

  • 利用了在 Foursquare 上收集的两个数据集,纽约和东京
    • 每个条目包括用户标识符、位置标识符、地理坐标、时间戳和场所类别
    • 还使用了一个私人数据集来缓解潜在的数据污染问题。它由意大利费拉拉的自行车手产生的 GPS 轨迹组成
      • 将城市划分为 200 x 200 平方米,并最终得到 2,488 个独特的位置

2.3 衡量标准

3 模型

4 实验

4.1 传统模型不具备迁移性

4.2 大模型的zero-shot和few-shot 能力不错

4.3 H和C的影响

增加 C 或 H 的访问次数无论是哪种模型,都会在 ACC@5 方面带来改进

完全去除情境或历史信息的极端情况导致性能严重下降

相关推荐
深度学习实战训练营38 分钟前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20063 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川4 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20218 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧39 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽9 小时前
【Pytorch】基本语法
人工智能·pytorch·python