论文笔记:Large Language Models are Zero-Shot Next LocationPredictors

1 intro

  • 下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。
    • NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理
  • NL 问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。
    • 然而,这些方法并不具备地理转移能力
    • 因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降
    • 尽管已经做出努力改善地理转移性,但主要的进展还是与集体移动模式相关,而零样本的地理独立性仍未得到解决
  • 此外,已经显示出大型语言模型(LLMs)嵌入了空间和地理知识,并且这些知识可以被有效提取
  • ------>探索将 LLMs 作为零样本下一个地点预测器的使用
    • 评估了四个 LLMs 的性能:Llama2、Llama2 Chat、GPT-3.5和 Mistral
    • 同时讨论了其他一些 LLMs、Phi-2、Phi-3、Gemma、GPT-J、Dolly的一些限制

2 preliminary

2.1 任务定义

  • 下一个地点预测通常定义为根据个体的历史移动轨迹预测其下一个将访问的地点的问题,这些轨迹通常表示为时空轨迹
    • (轨迹)时空点 p = (t, l) 是一个元组,其中 t 表示时间戳,l 表示地理位置。轨迹 P = p1, p2, ..., pn 是个体访问的 n 个时空点的时间有序序列
      • 根据 DeepMove的方法筛选轨迹
        • 筛选出记录少于 10 条的用户
        • 选择了 72 小时的间隔作为区分不同轨迹的阈值
        • 任何拥有少于五条轨迹的用户都被排除在分析之外
    • 用户的每条轨迹 P 都由历史访问H(history)和情境C(context)访问组成

2.2 数据集

  • 利用了在 Foursquare 上收集的两个数据集,纽约和东京
    • 每个条目包括用户标识符、位置标识符、地理坐标、时间戳和场所类别
    • 还使用了一个私人数据集来缓解潜在的数据污染问题。它由意大利费拉拉的自行车手产生的 GPS 轨迹组成
      • 将城市划分为 200 x 200 平方米,并最终得到 2,488 个独特的位置

2.3 衡量标准

3 模型

4 实验

4.1 传统模型不具备迁移性

4.2 大模型的zero-shot和few-shot 能力不错

4.3 H和C的影响

增加 C 或 H 的访问次数无论是哪种模型,都会在 ACC@5 方面带来改进

完全去除情境或历史信息的极端情况导致性能严重下降

相关推荐
码上地球4 分钟前
大数据成矿预测系列(九) | 数据的“自我画像”:自编码器如何实现非监督下的“特征学习”
人工智能·深度学习·机器学习·数学建模
愚公搬代码16 分钟前
【愚公系列】《MCP协议与AI Agent开发》011-MCP协议标准与规范体系(交互协议与状态码体系)
人工智能·交互
小程故事多_8025 分钟前
LangGraph系列:多智能体终极方案,ReAct+MCP工业级供应链系统
人工智能·react.js·langchain
진영_28 分钟前
深度学习打卡第R4周:LSTM-火灾温度预测
人工智能·深度学习·lstm
陈希瑞33 分钟前
从 0 到 1:Vue3+Django打造现代化宠物商城系统(含AI智能顾问)
人工智能·django·宠物
std78791 小时前
微软Visual Studio 2026正式登场,AI融入开发核心操作体验更流畅
人工智能·microsoft·visual studio
美狐美颜SDK开放平台1 小时前
什么是美颜sdk?美型功能开发与用户体验优化实战
人工智能·算法·ux·直播美颜sdk·第三方美颜sdk·视频美颜sdk
Mxsoft6191 小时前
电力绝缘子污秽多源感知与自适应清洁策略优化
人工智能
悟空CRM服务1 小时前
开源的力量:如何用开源技术构建高效IT架构?
java·人工智能·架构·开源·开源软件
机器人行业研究员1 小时前
机器人“小脑”萎缩,何谈“大脑”智慧?六维力/关节力传感器才是“救命稻草”
人工智能·机器人·人机交互·六维力传感器·关节力传感器