【深度学习】使用Conda虚拟环境安装多个版本的CUDA和CUDNN方便切换

conda虚拟环境安装CUDA和CUDNN

官网教程

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#conda-installation

1. 背景

深度学习用显卡训练的时候,需要安装与显卡对应的cuda和cudnn。但不同的项目所支持的pytorch版本是不一样的,而pytorch版本和cuda版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。我们可以在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。

环境1:

环境2

2. 使用Conda安装CUDA

2.1查看自己显卡驱动支持的最高cuda版本 输入nvidia-smi指令来查看。

2.2 创建与激活虚拟环境

c 复制代码
# create conda env 
conda create --name vdisco python==3.10

# env activate
conda activate vdisco

2.3 确定要安装的CUDA版本

c 复制代码
conda search cudatoolkit --info

2.4 下载与安装CUDA

方法一:把cuda下载到本地

首先复制url字段里的下载链接,然后用命令cd到想要下载的目录,执行如下代码下载

c 复制代码
wget [你刚刚复制的链接地址]

安装:执行如下命令进行安装,因为是通过本地安装的,所以需要写明本地包的路径

c 复制代码
# 在特定虚拟环境下安装
conda install --use-local [本地cuda包所在的路径]

方法二:直接安装

在特定虚拟环境下安装

conda install cuda -c nvidia/label/cuda-11.3.1

卸载:

conda remove cuda

3.1 CUDNN

查看:

c 复制代码
# 在特定虚拟环境下
conda search cudnn --info

3.2 在特定虚拟环境下安装

conda install --use-local [本地cudnn包所在的路径]

3.3 版本验证

需要用torch 验证,而不是cudnn

c 复制代码
# 虚拟环境中,进入python环境
import torch

# 查看pytorch版本
print(torch.__version__)

# cuda是否可用
print(torch.cuda.is_available())

# cuda版本
print(torch.version.cuda)

# cudnn版本
print(torch.backends.cudnn.version())

参考:

c 复制代码
https://blog.csdn.net/tyyhmtyyhm/article/details/136863438
https://blog.csdn.net/qq_43705697/article/details/121618276
相关推荐
冷yan~8 小时前
OpenAI Codex CLI 完全指南:AI 编程助手的终端革命
人工智能·ai·ai编程
菜鸟‍8 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习
AKAMAI8 小时前
无服务器计算架构的优势
人工智能·云计算
阿星AI工作室8 小时前
gemini3手势互动圣诞树保姆级教程来了!附提示词
前端·人工智能
刘一说8 小时前
时空大数据与AI融合:重塑物理世界的智能中枢
大数据·人工智能·gis
月亮月亮要去太阳8 小时前
基于机器学习的糖尿病预测
人工智能·机器学习
Oflycomm8 小时前
LitePoint 2025:以 Wi-Fi 8 与光通信测试推动下一代无线创新
人工智能·wifi模块·wifi7模块
机器之心9 小时前
「豆包手机」为何能靠超级Agent火遍全网,我们听听AI学者们怎么说
人工智能·openai
monster000w9 小时前
大模型微调过程
人工智能·深度学习·算法·计算机视觉·信息与通信
机器之心9 小时前
一手实测 | 智谱AutoGLM重磅开源: AI手机的「安卓时刻」正式到来
人工智能·openai