【深度学习】使用Conda虚拟环境安装多个版本的CUDA和CUDNN方便切换

conda虚拟环境安装CUDA和CUDNN

官网教程

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#conda-installation

1. 背景

深度学习用显卡训练的时候,需要安装与显卡对应的cuda和cudnn。但不同的项目所支持的pytorch版本是不一样的,而pytorch版本和cuda版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。我们可以在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。

环境1:

环境2

2. 使用Conda安装CUDA

2.1查看自己显卡驱动支持的最高cuda版本 输入nvidia-smi指令来查看。

2.2 创建与激活虚拟环境

c 复制代码
# create conda env 
conda create --name vdisco python==3.10

# env activate
conda activate vdisco

2.3 确定要安装的CUDA版本

c 复制代码
conda search cudatoolkit --info

2.4 下载与安装CUDA

方法一:把cuda下载到本地

首先复制url字段里的下载链接,然后用命令cd到想要下载的目录,执行如下代码下载

c 复制代码
wget [你刚刚复制的链接地址]

安装:执行如下命令进行安装,因为是通过本地安装的,所以需要写明本地包的路径

c 复制代码
# 在特定虚拟环境下安装
conda install --use-local [本地cuda包所在的路径]

方法二:直接安装

在特定虚拟环境下安装

conda install cuda -c nvidia/label/cuda-11.3.1

卸载:

conda remove cuda

3.1 CUDNN

查看:

c 复制代码
# 在特定虚拟环境下
conda search cudnn --info

3.2 在特定虚拟环境下安装

conda install --use-local [本地cudnn包所在的路径]

3.3 版本验证

需要用torch 验证,而不是cudnn

c 复制代码
# 虚拟环境中,进入python环境
import torch

# 查看pytorch版本
print(torch.__version__)

# cuda是否可用
print(torch.cuda.is_available())

# cuda版本
print(torch.version.cuda)

# cudnn版本
print(torch.backends.cudnn.version())

参考:

c 复制代码
https://blog.csdn.net/tyyhmtyyhm/article/details/136863438
https://blog.csdn.net/qq_43705697/article/details/121618276
相关推荐
绫语宁8 小时前
以防你不知道LLM小技巧!为什么 LLM 不适合多任务推理?
人工智能·后端
霍格沃兹测试开发学社-小明8 小时前
AI来袭:自动化测试在智能实战中的华丽转身
运维·人工智能·python·测试工具·开源
大千AI助手8 小时前
Softmax函数:深度学习中的多类分类基石与进化之路
人工智能·深度学习·机器学习·分类·softmax·激活函数·大千ai助手
韩曙亮9 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ② ( 深度学习 -> 机器视觉 )
人工智能·深度学习·学习·ai·机器视觉
九千七5269 小时前
sklearn学习(3)数据降维
人工智能·python·学习·机器学习·sklearn
黑客思维者9 小时前
Salesforce Einstein GPT 人机协同运营的核心应用场景与工作流分析
人工智能·gpt·深度学习·salesforce·rag·人机协同·einstein gpt
多恩Stone9 小时前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
郭庆汝9 小时前
(七)自然语言处理笔记——Ai医生
人工智能·笔记·自然语言处理
生而为虫9 小时前
28.Python处理图像
人工智能·python·计算机视觉·pillow·pygame
Dev7z9 小时前
基于OpenCV和MATLAB的椭圆检测系统的设计与实现
人工智能·opencv·matlab