【深度学习】使用Conda虚拟环境安装多个版本的CUDA和CUDNN方便切换

conda虚拟环境安装CUDA和CUDNN

官网教程

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#conda-installation

1. 背景

深度学习用显卡训练的时候,需要安装与显卡对应的cuda和cudnn。但不同的项目所支持的pytorch版本是不一样的,而pytorch版本和cuda版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。我们可以在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。

环境1:

环境2

2. 使用Conda安装CUDA

2.1查看自己显卡驱动支持的最高cuda版本 输入nvidia-smi指令来查看。

2.2 创建与激活虚拟环境

c 复制代码
# create conda env 
conda create --name vdisco python==3.10

# env activate
conda activate vdisco

2.3 确定要安装的CUDA版本

c 复制代码
conda search cudatoolkit --info

2.4 下载与安装CUDA

方法一:把cuda下载到本地

首先复制url字段里的下载链接,然后用命令cd到想要下载的目录,执行如下代码下载

c 复制代码
wget [你刚刚复制的链接地址]

安装:执行如下命令进行安装,因为是通过本地安装的,所以需要写明本地包的路径

c 复制代码
# 在特定虚拟环境下安装
conda install --use-local [本地cuda包所在的路径]

方法二:直接安装

在特定虚拟环境下安装

conda install cuda -c nvidia/label/cuda-11.3.1

卸载:

conda remove cuda

3.1 CUDNN

查看:

c 复制代码
# 在特定虚拟环境下
conda search cudnn --info

3.2 在特定虚拟环境下安装

conda install --use-local [本地cudnn包所在的路径]

3.3 版本验证

需要用torch 验证,而不是cudnn

c 复制代码
# 虚拟环境中,进入python环境
import torch

# 查看pytorch版本
print(torch.__version__)

# cuda是否可用
print(torch.cuda.is_available())

# cuda版本
print(torch.version.cuda)

# cudnn版本
print(torch.backends.cudnn.version())

参考:

c 复制代码
https://blog.csdn.net/tyyhmtyyhm/article/details/136863438
https://blog.csdn.net/qq_43705697/article/details/121618276
相关推荐
雍凉明月夜17 小时前
视觉opencv学习笔记Ⅴ-数据增强(2)
人工智能·python·opencv·计算机视觉
JoannaJuanCV17 小时前
自动驾驶—CARLA仿真(24)sensor_synchronization demo
网络·人工智能·自动驾驶·carla
JoannaJuanCV17 小时前
自动驾驶—CARLA仿真(14)draw_skeleton demo
人工智能·机器学习·自动驾驶
测试人社区-千羽17 小时前
飞机自动驾驶系统测试:安全关键系统的全面验证框架
人工智能·安全·面试·职场和发展·自动化·自动驾驶·测试用例
Abona17 小时前
广义端到端(GE2E)自动驾驶技术综述:范式演进、核心挑战与破局路径
人工智能·机器学习·自动驾驶
CSDN官方博客17 小时前
CSDN社区镜像创作活动
大数据·运维·人工智能
JoannaJuanCV18 小时前
自动驾驶—CARLA仿真(12)client_bounding_boxes demo
人工智能·自动驾驶·pygame·carla
志凌海纳SmartX18 小时前
AI知识科普丨ModelOps / MLOps / LLMOps 有什么区别?
人工智能
SACKings18 小时前
神经网络的层是什么?
人工智能·深度学习·神经网络
云闲不收18 小时前
AI之 n8n
人工智能