预训练语言模型PLM(课程笔记)

一:分为两种范式

  1. Feature-based

预训练的模型参数(word-enbeddings)作为下游任务的输入,不更新预训练参数。

代表:word2vec,ELMO

  1. Fine-tuning

在下游任务时对模型参数进行更新

代表:BERT,GPT
二:GPT模型与BERT对比

1.模型结构

GPT是第一个基于transformer架构的PLM,使用的是transformer的Decoder;而Bert使用的是transformer的Encoder,相比于GPT结构更简单。

2.预训练方式

GPT:自回归语言模型预训练(预测下一个词),单向的,更适合生成式任务。

BERT:掩码语言模型(MLM)和下一句预测(NSP),双向的,更适合文本理解的任务。

3.存在的问题

BERT用了MLM,pre-training和fine-tuning不能统一起来,且训练效率比较低。
三:GPT,GPT2,GPT3对比

整体趋势,模型越来越大,大力出奇迹。

GPT:Fine-tuning

GPT2:Zero-Shot Learning

GPT3:Few-Shot Learning,但不更新参数

相关推荐
m0_563745112 分钟前
误差卡尔曼滤波在VINS-mono中的应用
人工智能·机器学习
恣逍信点14 分钟前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘15 分钟前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
小程故事多_8016 分钟前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
陈天伟教授17 分钟前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
人机与认知实验室33 分钟前
一些容易被人工智能取代的职业
人工智能
茶栀(*´I`*)37 分钟前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp
却道天凉_好个秋41 分钟前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
听麟41 分钟前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务
藦卡机器人1 小时前
国产机械臂做的比较好的品牌有哪些?
大数据·数据库·人工智能