【Deep-ML系列】Pegasos Kernel SVM Implementation(手写支持向量机)

引言

支持向量机(SVM)是机器学习领域中一种非常强大的分类算法,广泛应用于各种分类任务。今天,我们将深入探讨SVM中的Pegasos算法及其与核函数的结合。通过代码示例和详细解释,我们将理解Pegasos算法如何逐步调整模型参数,从而优化分类器的性能。

Pegasos算法概述

Pegasos算法(Primal Estimated sub-GrAdient SOlver for SVM)是一种用于训练SVM的在线学习算法。与标准的SVM优化方法不同,Pegasos通过随机梯度下降(SGD)逐步更新模型参数,使得算法在处理大规模数据时更加高效。

在每次迭代中,Pegasos只对一个或一小部分样本进行参数更新,这与传统的批量梯度下降不同。这个特点使得Pegasos在处理大规模数据集时有明显的速度优势。

核函数的作用

核函数的引入是SVM的一个重要特性,使得它能够处理线性不可分的数据。核函数通过将原始数据映射到一个更高维度的空间,在这个空间中,数据可能变得线性可分。

我们讨论了两种常用的核函数:

  • 线性核函数:直接计算两个样本的点积,适用于线性可分的数据。
  • RBF(径向基函数)核:计算两个样本的高斯距离,适用于非线性可分的数据。
代码解析
python 复制代码
import numpy as np


def linear_kernel(x, y):
    return np.dot(x, y)


def rbf_kernel(x, y, sigma=1.0):
    return np.exp(-np.linalg.norm(x - y) ** 2 / (2 * (sigma ** 2)))


def pegasos_kernel_svm(data, labels, kernel='linear', lambda_val=0.01, iterations=100, sigma=1.0):
    n_samples = len(data)
    alphas = np.zeros(n_samples)
    b = 0

    for t in range(1, iterations + 1):
        for i in range(n_samples):
            eta = 1.0 / (lambda_val * t)
            if kernel == 'linear':
                kernel_func = linear_kernel
            elif kernel == 'rbf':
                kernel_func = lambda x, y: rbf_kernel(x, y, sigma)

            decision = sum(alphas[j] * labels[j] * kernel_func(data[j], data[i]) for j in range(n_samples)) + b
            if labels[i] * decision < 1:
                alphas[i] += eta * (labels[i] - lambda_val * alphas[i])
                b += eta * labels[i]

    return np.round(alphas, 4).tolist(), np.round(b, 4)


if __name__ == '__main__':
    data = np.array([[1, 2], [2, 3], [3, 1], [4, 1]])
    labels = np.array([1, 1, -1, -1])
    kernel = 'rbf'
    lambda_val = 0.01
    iterations = 100
    print(pegasos_kernel_svm(data, labels, kernel, lambda_val, iterations))
相关推荐
shizhenshide11 小时前
极速响应:平均破解速度<3秒的验证码服务,为抢购爬虫而生
算法
AD钙奶-lalala11 小时前
leetcode核心母题总结
算法·leetcode·职场和发展
三块可乐两块冰11 小时前
【第二十六周】机器学习笔记二十五
人工智能·笔记·机器学习
byzh_rc11 小时前
[机器学习-从入门到入土] 特征选择
人工智能·机器学习
光羽隹衡11 小时前
机器学习——K-means聚类
机器学习·kmeans·聚类
Toky丶11 小时前
【文献阅读】Half-Quadratic Quantization of Large Machine Learning Models
人工智能·机器学习
努力学算法的蒟蒻11 小时前
day53(1.4)——leetcode面试经典150
算法·leetcode·面试
LDG_AGI11 小时前
【推荐系统】深度学习训练框架(二十三):TorchRec端到端超大规模模型分布式训练+推理实战
人工智能·分布式·深度学习·机器学习·数据挖掘·推荐算法
leiming611 小时前
c++ transform算法
开发语言·c++·算法
裴云飞12 小时前
Compose原理一之快照系统
算法·架构