LeetCode //C - 327. Count of Range Sum

327. Count of Range Sum

Given an integer array nums and two integers lower and upper, return the number of range sums that lie in [lower, upper] inclusive.

Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j inclusive, where i <= j.

Example 1:

Input: nums = [-2,5,-1], lower = -2, upper = 2
Output: 3
Explanation: The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.

Example 2:

Input: nums = [0], lower = 0, upper = 0
Output: 1

Constraints:
  • 1 < = n u m s . l e n g t h < = 1 0 5 1 <= nums.length <= 10^5 1<=nums.length<=105
  • − 2 31 < = n u m s [ i ] < = 2 31 − 1 -2^{31} <= nums[i] <= 2^{31} - 1 −231<=nums[i]<=231−1
  • − 1 0 5 < = l o w e r < = u p p e r < = 1 0 5 -10^5 <= lower <= upper <= 10^5 −105<=lower<=upper<=105
  • The answer is guaranteed to fit in a 32-bit integer.

From: LeetCode

Link: 327. Count of Range Sum


Solution:

Ideas:
  1. Prefix Sum Array: We create a prefix sum array where prefixSums[i] represents the sum of the array elements from the start to the i-th index. This allows us to calculate the sum of any subarray [i, j] as prefixSums[j+1] - prefixSums[i].

  2. Merge Sort: The core idea of the solution is to use a modified merge sort. During the merge step, we count the number of valid ranges [i, j] that satisfy the condition lower <= S(i, j) <= upper. This is done by maintaining the order of the prefix sums while counting how many sums in the right half of the array fall within the desired range relative to each sum in the left half.

  3. Counting with Binary Search: Within the merge step, we use two pointers to determine the range [lower, upper] for each prefix sum in the left half compared to prefix sums in the right half. This ensures that the solution remains efficient even for large arrays.

Code:
c 复制代码
long* temp;

int mergeCount(long* prefixSums, int left, int right, int lower, int upper) {
    if (left >= right) {
        return 0;
    }
    
    int mid = left + (right - left) / 2;
    int count = mergeCount(prefixSums, left, mid, lower, upper) + mergeCount(prefixSums, mid + 1, right, lower, upper);
    
    int j = mid + 1, k = mid + 1, t = mid + 1;
    int r = 0;
    
    for (int i = left; i <= mid; ++i) {
        while (j <= right && prefixSums[j] - prefixSums[i] < lower) j++;
        while (k <= right && prefixSums[k] - prefixSums[i] <= upper) k++;
        while (t <= right && prefixSums[t] < prefixSums[i]) temp[r++] = prefixSums[t++];
        temp[r++] = prefixSums[i];
        count += k - j;
    }
    
    for (int i = 0; i < t - left; ++i) {
        prefixSums[left + i] = temp[i];
    }
    
    return count;
}

int countRangeSum(int* nums, int numsSize, int lower, int upper) {
    if (numsSize == 0) {
        return 0;
    }
    
    long* prefixSums = (long*)malloc((numsSize + 1) * sizeof(long));
    temp = (long*)malloc((numsSize + 1) * sizeof(long));
    
    prefixSums[0] = 0;
    for (int i = 0; i < numsSize; ++i) {
        prefixSums[i + 1] = prefixSums[i] + nums[i];
    }
    
    int result = mergeCount(prefixSums, 0, numsSize, lower, upper);
    
    free(prefixSums);
    free(temp);
    
    return result;
}
相关推荐
董董灿是个攻城狮3 小时前
5分钟搞懂什么是窗口注意力?
算法
Dann Hiroaki3 小时前
笔记分享: 哈尔滨工业大学CS31002编译原理——02. 语法分析
笔记·算法
jz_ddk4 小时前
[学习] C语言数学库函数背后的故事:`double erf(double x)`
c语言·开发语言·学习
qqxhb5 小时前
零基础数据结构与算法——第四章:基础算法-排序(上)
java·数据结构·算法·冒泡·插入·选择
无小道5 小时前
c++-引用(包括完美转发,移动构造,万能引用)
c语言·开发语言·汇编·c++
FirstFrost --sy7 小时前
数据结构之二叉树
c语言·数据结构·c++·算法·链表·深度优先·广度优先
森焱森7 小时前
垂起固定翼无人机介绍
c语言·单片机·算法·架构·无人机
搂鱼1145147 小时前
(倍增)洛谷 P1613 跑路/P4155 国旗计划
算法
Yingye Zhu(HPXXZYY)7 小时前
Codeforces 2021 C Those Who Are With Us
数据结构·c++·算法
无聊的小坏坏8 小时前
三种方法详解最长回文子串问题
c++·算法·回文串