目录

LeetCode //C - 327. Count of Range Sum

327. Count of Range Sum

Given an integer array nums and two integers lower and upper, return the number of range sums that lie in [lower, upper] inclusive.

Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j inclusive, where i <= j.

Example 1:

Input: nums = [-2,5,-1], lower = -2, upper = 2
Output: 3
Explanation: The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.

Example 2:

Input: nums = [0], lower = 0, upper = 0
Output: 1

Constraints:
  • 1 < = n u m s . l e n g t h < = 1 0 5 1 <= nums.length <= 10^5 1<=nums.length<=105
  • − 2 31 < = n u m s [ i ] < = 2 31 − 1 -2^{31} <= nums[i] <= 2^{31} - 1 −231<=nums[i]<=231−1
  • − 1 0 5 < = l o w e r < = u p p e r < = 1 0 5 -10^5 <= lower <= upper <= 10^5 −105<=lower<=upper<=105
  • The answer is guaranteed to fit in a 32-bit integer.

From: LeetCode

Link: 327. Count of Range Sum


Solution:

Ideas:
  1. Prefix Sum Array: We create a prefix sum array where prefixSums[i] represents the sum of the array elements from the start to the i-th index. This allows us to calculate the sum of any subarray [i, j] as prefixSums[j+1] - prefixSums[i].

  2. Merge Sort: The core idea of the solution is to use a modified merge sort. During the merge step, we count the number of valid ranges [i, j] that satisfy the condition lower <= S(i, j) <= upper. This is done by maintaining the order of the prefix sums while counting how many sums in the right half of the array fall within the desired range relative to each sum in the left half.

  3. Counting with Binary Search: Within the merge step, we use two pointers to determine the range [lower, upper] for each prefix sum in the left half compared to prefix sums in the right half. This ensures that the solution remains efficient even for large arrays.

Code:
c 复制代码
long* temp;

int mergeCount(long* prefixSums, int left, int right, int lower, int upper) {
    if (left >= right) {
        return 0;
    }
    
    int mid = left + (right - left) / 2;
    int count = mergeCount(prefixSums, left, mid, lower, upper) + mergeCount(prefixSums, mid + 1, right, lower, upper);
    
    int j = mid + 1, k = mid + 1, t = mid + 1;
    int r = 0;
    
    for (int i = left; i <= mid; ++i) {
        while (j <= right && prefixSums[j] - prefixSums[i] < lower) j++;
        while (k <= right && prefixSums[k] - prefixSums[i] <= upper) k++;
        while (t <= right && prefixSums[t] < prefixSums[i]) temp[r++] = prefixSums[t++];
        temp[r++] = prefixSums[i];
        count += k - j;
    }
    
    for (int i = 0; i < t - left; ++i) {
        prefixSums[left + i] = temp[i];
    }
    
    return count;
}

int countRangeSum(int* nums, int numsSize, int lower, int upper) {
    if (numsSize == 0) {
        return 0;
    }
    
    long* prefixSums = (long*)malloc((numsSize + 1) * sizeof(long));
    temp = (long*)malloc((numsSize + 1) * sizeof(long));
    
    prefixSums[0] = 0;
    for (int i = 0; i < numsSize; ++i) {
        prefixSums[i + 1] = prefixSums[i] + nums[i];
    }
    
    int result = mergeCount(prefixSums, 0, numsSize, lower, upper);
    
    free(prefixSums);
    free(temp);
    
    return result;
}
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
算AI7 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
似水এ᭄往昔8 小时前
【C语言】文件操作
c语言·开发语言
hyshhhh9 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
蒙奇D索大10 小时前
【数据结构】第六章启航:图论入门——从零掌握有向图、无向图与简单图
c语言·数据结构·考研·改行学it
杉之10 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓10 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf10 小时前
图论----拓扑排序
算法·图论
我要昵称干什么10 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ11 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl11 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法