LeetCode //C - 327. Count of Range Sum

327. Count of Range Sum

Given an integer array nums and two integers lower and upper, return the number of range sums that lie in [lower, upper] inclusive.

Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j inclusive, where i <= j.

Example 1:

Input: nums = [-2,5,-1], lower = -2, upper = 2
Output: 3
Explanation: The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.

Example 2:

Input: nums = [0], lower = 0, upper = 0
Output: 1

Constraints:
  • 1 < = n u m s . l e n g t h < = 1 0 5 1 <= nums.length <= 10^5 1<=nums.length<=105
  • − 2 31 < = n u m s [ i ] < = 2 31 − 1 -2^{31} <= nums[i] <= 2^{31} - 1 −231<=nums[i]<=231−1
  • − 1 0 5 < = l o w e r < = u p p e r < = 1 0 5 -10^5 <= lower <= upper <= 10^5 −105<=lower<=upper<=105
  • The answer is guaranteed to fit in a 32-bit integer.

From: LeetCode

Link: 327. Count of Range Sum


Solution:

Ideas:
  1. Prefix Sum Array: We create a prefix sum array where prefixSums[i] represents the sum of the array elements from the start to the i-th index. This allows us to calculate the sum of any subarray [i, j] as prefixSums[j+1] - prefixSums[i].

  2. Merge Sort: The core idea of the solution is to use a modified merge sort. During the merge step, we count the number of valid ranges [i, j] that satisfy the condition lower <= S(i, j) <= upper. This is done by maintaining the order of the prefix sums while counting how many sums in the right half of the array fall within the desired range relative to each sum in the left half.

  3. Counting with Binary Search: Within the merge step, we use two pointers to determine the range [lower, upper] for each prefix sum in the left half compared to prefix sums in the right half. This ensures that the solution remains efficient even for large arrays.

Code:
c 复制代码
long* temp;

int mergeCount(long* prefixSums, int left, int right, int lower, int upper) {
    if (left >= right) {
        return 0;
    }
    
    int mid = left + (right - left) / 2;
    int count = mergeCount(prefixSums, left, mid, lower, upper) + mergeCount(prefixSums, mid + 1, right, lower, upper);
    
    int j = mid + 1, k = mid + 1, t = mid + 1;
    int r = 0;
    
    for (int i = left; i <= mid; ++i) {
        while (j <= right && prefixSums[j] - prefixSums[i] < lower) j++;
        while (k <= right && prefixSums[k] - prefixSums[i] <= upper) k++;
        while (t <= right && prefixSums[t] < prefixSums[i]) temp[r++] = prefixSums[t++];
        temp[r++] = prefixSums[i];
        count += k - j;
    }
    
    for (int i = 0; i < t - left; ++i) {
        prefixSums[left + i] = temp[i];
    }
    
    return count;
}

int countRangeSum(int* nums, int numsSize, int lower, int upper) {
    if (numsSize == 0) {
        return 0;
    }
    
    long* prefixSums = (long*)malloc((numsSize + 1) * sizeof(long));
    temp = (long*)malloc((numsSize + 1) * sizeof(long));
    
    prefixSums[0] = 0;
    for (int i = 0; i < numsSize; ++i) {
        prefixSums[i + 1] = prefixSums[i] + nums[i];
    }
    
    int result = mergeCount(prefixSums, 0, numsSize, lower, upper);
    
    free(prefixSums);
    free(temp);
    
    return result;
}
相关推荐
xlq2232220 小时前
22.多态(下)
开发语言·c++·算法
CoderYanger20 小时前
C.滑动窗口-越短越合法/求最长/最大——2958. 最多 K 个重复元素的最长子数组
java·数据结构·算法·leetcode·哈希算法·1024程序员节
say_fall21 小时前
C语言编程实战:每日一题:随机链表的复制
c语言·开发语言·链表
却话巴山夜雨时i21 小时前
394. 字符串解码【中等】
java·数据结构·算法·leetcode
haing201921 小时前
使用黄金分割法计算Bezier曲线曲率极值的方法介绍
算法·黄金分割
leoufung21 小时前
LeetCode 230:二叉搜索树中第 K 小的元素 —— 从 Inorder 遍历到 Order Statistic Tree
算法·leetcode·职场和发展
jyyyx的算法博客21 小时前
多模字符串匹配算法 -- 面试题 17.17. 多次搜索
算法
da_vinci_x21 小时前
Sampler AI + 滤波算法:解决 AIGC 贴图“噪点过剩”,构建风格化 PBR 工业管线
人工智能·算法·aigc·材质·贴图·技术美术·游戏美术
惊鸿.Jh21 小时前
503. 下一个更大元素 II
数据结构·算法·leetcode
唐·柯里昂79821 小时前
野火鲁班猫5使用正点原子 RTL8188EUS Wifi模块驱动移植(Linux5.10 Debian系统) 解决zsh报错
linux·c语言·mcu·物联网·ubuntu·硬件工程·软件构建