基于YOLOv8的无人机高空红外(HIT-UAV)检测算法,新的混合型扩张型残差注意力(HDRAB)助力涨点(二)

💡💡💡本文内容:针对基于YOLOv8的无人机高空红外(HIT-UAV)检测算法进行性能提升,加入各个创新点做验证性试验。

💡💡💡一种新的混合型扩张型残差注意力(HDRAB),去除图像采集或传输过程中产生的真实噪声(即空间变异噪声)

1)混合型扩张型残差注意力(HDRAB):mAP从原始的0.773 提升至 0 .779

1.无人机高空红外数据集介绍

无人机高空红外检测数据集大小,训练集2008,验证集287,测试集571张,类别

0: Person
1: Car
2: Bicycle
3: OtherVehicle
4: DontCare

细节图如下:

1.1 split_train_val.py

复制代码
# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

1.2 voc_label.py生成适合YOLOv8训练的txt

复制代码
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["Person","Car","Bicycle","OtherVehicle","DontCare"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.png\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

2.基于YOLOv8的无人机高空红外识别

2.1 原始结果

原始mAP为0.773

复制代码
YOLOv8n summary (fused): 168 layers, 3006623 parameters, 0 gradients, 8.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 9/9 [00:07<00:00,  1.13it/s]
                   all        287       2460      0.818      0.707      0.773      0.525
                Person        287       1168      0.933      0.799      0.908      0.495
                   Car        287        719      0.942      0.945      0.979      0.743
               Bicycle        287        554      0.911      0.756      0.885      0.513
          OtherVehicle        287         12      0.865       0.75      0.781      0.722
              DontCare        287          7      0.439      0.286      0.314      0.152

2.2 一种新颖的双分支残差注意,助力低光照、红外小目标检测

原文链接:YOLOv8独家原创改进:图像去噪 |一种新颖的双分支残差注意,助力低光照、红外小目标检测 | 2024年最新发表(全网独家首发)_yolo双分支网络-CSDN博客

💡💡💡解决什么问题:许多网络不能很好地去除图像采集或传输过程中产生的真实噪声(即空间变异噪声),这严重阻碍了它们在实际图像去噪任务中的应用。

💡💡💡创新点: 提出了一种新的双分支残差注意网络用于图像去噪 ,它具有广泛的模型架构和注意引导特征学习的优点。该模型包含两个不同的并行分支,可以捕获互补特征,增强模型的学习能力。我们分别设计了一种新的残差注意力(RAB)和一种新的混合型扩张型残差注意力(HDRAB)

改进1结构图如下:

mAP有原始的0.773提升至0.779

复制代码
YOLOv8-HDRAB summary (fused): 248 layers, 10410279 parameters, 0 gradients, 23.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 9/9 [00:09<00:00,  1.02s/it]
                   all        287       2460      0.832      0.754      0.779      0.498
                Person        287       1168      0.841      0.887      0.904      0.489
                   Car        287        719      0.911      0.962      0.978      0.746
               Bicycle        287        554        0.8      0.843      0.892       0.52
          OtherVehicle        287         12      0.869      0.667      0.729      0.611
              DontCare        287          7      0.738      0.408      0.392      0.125

3.系列篇

  1. 魔改SimAM注意力助力涨点

2) 新的混合型扩张型残差注意力(HDRAB)助力涨点

3) 一种基于YOLOv8的高精度无人机高空红外检测算法(原创自研)

关注下方名片点击关注,源码获取途径。

相关推荐
科创致远2 分钟前
esop系统可量化 ROI 投资回报率客户案例故事-案例1:宁波某精密制造企业
大数据·人工智能·制造·精益工程
阿杰学AI3 分钟前
AI核心知识60——大语言模型之NLP(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·nlp·aigc·agi
程序员三明治4 分钟前
【动态规划】01背包与完全背包问题详解,LeetCode零钱兑换II秒解,轻松解力扣
算法·leetcode·动态规划·java后端·01背包·完全背包·零钱兑换
程序猿追4 分钟前
体验LongCat-Image-Edit图像编辑模型:在昇腾NPU上的部署与推理全流程分享
python·大模型·华为云
长安牧笛5 分钟前
开发家庭宠物行为监测工具,识别宠物进食,饮水和活动情况,推送宠物健康报告。
python
waves浪游5 分钟前
进程控制(下)
linux·运维·服务器·开发语言·c++
自由生长20246 分钟前
大数据计算框架-流式计算的Join
算法
IT猿手6 分钟前
融合DWA的青蒿素优化算法(Artemisinin Optimization Algorithm, AOA)求解无人机三维动态避障路径规划,MATLAB代码
算法·matlab·无人机
丹宇码农7 分钟前
使用AI一步生成音视频文件的会议纪要或者课后笔记
人工智能·笔记·音视频