基于状态机实现WIFI模组物联网

1.0 状态机框架原理

如果成功的话就连接热点,如果失败就返回AT通信检查,如果AT通信检查还是失败就放回硬件复位这个状态,如果热点链接成功,就连接MQTT指令,如果失败就返回AT通信检查,如果成功就连接云平台通信,如果失败就返回AT通信检查这个状态。


2.0 程序编写


在这个过程中使用的是连接固定的热点,后续会连接可变动的WIFI热点,注上面的状态图是基于固定的WIFI热点连接的状态图形。

cpp 复制代码
// 创建枚举类型
typedef enum
{
	WIFI_COMM_WAIT,
	WIFI_COMM_OK,
	WIFI_COMM_FALL,
}WifiCommState_t;

注:WIFI_COMM_WAIT 表示的是正在处理AT指令,WIFI_COMM_OK,表示AT指令发送完成,FALL表示AT指令发送超时,


3.0 Wi-Fi模块与AT命令交互

cpp 复制代码
static WifiCommState_t AtCmdHandle(char *cmd, char* rsp, uint32_t timeoutMs)
{
	static WifiCommState_t s_commState = WIFI_COMM_OK;
	static uint64_t s_sendCmdTime;
	char *recvStrBuf;
	
	if (s_commState != WIFI_COMM_WAIT)
	{
		if (cmd != NULL)
		{
			SendWifiModuleStr(cmd);
		}
		s_commState = WIFI_COMM_WAIT;
		s_sendCmdTime = GetSysRunTime();
	}
	else
	{
		if ((GetSysRunTime() - s_sendCmdTime) < timeoutMs)
		{
			recvStrBuf = RecvWifiModuleStr();
			if (strstr(recvStrBuf, rsp) != NULL)
			{
				s_commState = WIFI_COMM_OK;
			}
		}
		else
		{
			s_commState = WIFI_COMM_FALL;
		}
	}
	return s_commState;
}

4.0 AT 命令结构体信息

cpp 复制代码
// AT命令信息
typedef struct
{
	char *cmd;
	char *rsp;
	uint32_t timeoutMs;
}AtCmdInfo_t;

5.0 模组初始化命令集

cpp 复制代码
/*模组初始化命令集*/
static AtCmdInfo_t g_checkModuleCmdTable[] = {
    {
        .cmd = "ATE0\r\n",        // 关闭回显
        .rsp = "OK",
		.timeoutMs = 1000,
    },
	{
        .cmd = "AT+CWMODE=1\r\n",
        .rsp = "OK",
		.timeoutMs = 1000,	
	},
};

对应在AT指令说明文档中的命令是:ATE 表示的是开启和关闭回显

cpp 复制代码
.cmd = "AT+CWMODE=1\r\n",

注:这个指令是用于设置WIFI的工作模式,该指令表示的原因是设置WIFI的工作指令为客户端的工作模式。

  1. .cmd = "AT+CWMODE=1\r\n":

    • 这是AT命令的字符串表示形式,用于设置Wi-Fi模块的工作模式。
    • AT+CWMODE=1 表示设置Wi-Fi模块工作在Station模式(客户端模式),即Wi-Fi模块将连接到一个现有的Wi-Fi网络。
    • \r\n 是回车换行符,通常用于表示命令的结束。
  2. .rsp = "OK":

    • 这是指令成功执行后期望从Wi-Fi模块接收到的响应字符串。
    • 在许多情况下,Wi-Fi模块会在成功执行AT命令后返回 "OK"
  3. .timeoutMs = 1000:

    • 这是一个整数,表示在等待Wi-Fi模块响应时的超时时间,单位是毫秒。
    • 在本例中,超时时间为1000毫秒(1秒)。

4.0 检查WIFI模组的工作状态

cpp 复制代码
WifiCommState_t CheckWifiModuleWork(void)
{
	WifiCommState_t commState;
	static uint8_t retryCount = 0;
	static AtCheckModuleCmdType cmdType = AT_E0;
	
	switch (cmdType)
	{
		case AT_E0:
			commState = AtCmdHandle(g_checkModuleCmdTable[AT_E0].cmd, g_checkModuleCmdTable[AT_E0].rsp,
			g_checkModuleCmdTable[AT_E0].timeoutMs);
			if (commState == WIFI_COMM_OK)
			{
				retryCount = 0;
				cmdType = AT_CWMODE_1;
			}
			else if (commState == WIFI_COMM_FALL)
			{
				retryCount++;
				if (retryCount == 3)
				{
					retryCount = 0;
					return WIFI_COMM_FALL;
				}
			}
			break;
		case AT_CWMODE_1:
			commState = AtCmdHandle(g_checkModuleCmdTable[AT_CWMODE_1].cmd, g_checkModuleCmdTable[AT_CWMODE_1].rsp,
			g_checkModuleCmdTable[AT_CWMODE_1].timeoutMs);
			
			if (commState == WIFI_COMM_OK)
			{
				cmdType = AT_E0;
				return WIFI_COMM_OK;
			}
			else if (commState == WIFI_COMM_FALL)
			{
				return WIFI_COMM_FALL;
			}
			break;
	}
	return WIFI_COMM_WAIT;
}

5.0 创建AT指令表

cpp 复制代码
static AtCmdInfo_t g_ConnectApCmdTable[] = {
	{
		.cmd = "AT+CWJAP=\"%s\",\"%s\"\r\n",   // 这里的\是给编译器用的
		//.cmd = "AT+CWJAP=\"HIKE_5F\\,2.4G\",\"hike666666\"\r\n",
		.rsp = "GOT IP",
		.timeoutMs = 15000,
	},
};

注:"AT+CWJAP=\"%s\",\"%s\"\r\n" 此处这条AT指令的格式为什么是这样,主要原因是AT手册规定的格式就是这个样子:在程序中凡是AT指令出现, " \ 都需要在前面添加\号进行转义,具体如下所示:


6.0 AT+CWJAP 命令详解

注:

  • AT+CWJAP: 这是Wi-Fi模块用于连接到无线接入点(Access Point, AP)的AT命令。
  • SSID: 服务集标识符(Service Set Identifier),它是用来唯一标识一个无线网络的名字。
  • PWD: 密码,指的是Wi-Fi网络的安全密钥或密码。
cpp 复制代码
AT+CWJAP="SSID","password"
  • SSID 替换为你要连接的Wi-Fi网络的名称。
  • password 替换为对应的Wi-Fi网络密码。

7.0 检查WIFI连接函数

cpp 复制代码
typedef enum 
{
	AT_CWJAP_SSID_PWD,
} AtConnectApCmdType;

static char g_apSsid[20] = "HIKE_5F_2.4G";
static char g_apPwd[20] = "hike666666";

WifiCommState_t CheckWifiConnect(void)
{
	WifiCommState_t commState;
	static AtConnectApCmdType cmdType = AT_CWJAP_SSID_PWD;
	static uint8_t retryCount = 0;
	char cmdStrBuf[256];
	switch (cmdType)
	{		
		case AT_CWJAP_SSID_PWD:
			
			sprintf(cmdStrBuf, g_ConnectApCmdTable[AT_CWJAP_SSID_PWD].cmd, g_apSsid, g_apPwd);
			commState = AtCmdHandle(cmdStrBuf, g_ConnectApCmdTable[AT_CWJAP_SSID_PWD].rsp, 
								 g_ConnectApCmdTable[AT_CWJAP_SSID_PWD].timeoutMs);
		
			if (commState == WIFI_COMM_OK)
			{
				retryCount = 0;
				return WIFI_COMM_OK;
			}
			else if (commState == WIFI_COMM_FAIL)
			{
				retryCount++;
				if (retryCount == 3)
				{
					retryCount = 0;
					return WIFI_COMM_FAIL;
				}

			}
			break;
	}
	return WIFI_COMM_WAIT;	
}

8.0 枚举WIFI工作状态

cpp 复制代码
typedef enum
{
	CHECK_WIFI_MODULE,
	CHECK_WIFI_CONNECT,
	CONNECT_MQTT_SERVER,
	COMM_MQTT_SERVER,
	HWRESET_WIFI_MODULE,
	WIWI_MODULE_ERROR,
} WifiWorkState_t;

注:一以上各个枚举变量的含义:

这个枚举类型 WifiWorkState_t 定义了一系列的状态,用于描述Wi-Fi模块在执行特定任务时的不同阶段。这些状态可以帮助我们跟踪Wi-Fi模块的工作流程。下面是每个枚举成员的含义:

  1. CHECK_WIFI_MODULE:

    • 这个状态表示正在检查Wi-Fi模块的基本功能或状态。这可能是初始化过程的一部分,用于验证Wi-Fi模块是否准备好接受进一步的命令。
  2. CHECK_WIFI_CONNECT:

    • 这个状态表示正在检查Wi-Fi模块是否已成功连接到Wi-Fi网络。这通常发生在Wi-Fi模块尝试连接到一个接入点之后。
  3. CONNECT_MQTT_SERVER:

    • 这个状态表示Wi-Fi模块正在尝试连接到MQTT服务器。一旦Wi-Fi连接建立,下一步就是与MQTT服务器建立连接。
  4. COMM_MQTT_SERVER:

    • 这个状态表示Wi-Fi模块已经成功连接到了MQTT服务器,并且正在与其进行通信。这可能涉及到发布消息、订阅主题等MQTT协议的交互。
  5. HWRESET_WIFI_MODULE:

    • 这个状态表示正在对Wi-Fi模块执行硬件重置。这可能是因为遇到一些无法通过软件解决的问题,或者是为了确保Wi-Fi模块回到一个已知的初始状态。
  6. WIWI_MODULE_ERROR:

    • 这个状态表示Wi-Fi模块遇到了错误。这可能是由于硬件故障、软件错误或其他未知问题引起的。当Wi-Fi模块无法正常工作时,它可能会进入这个状态。

9.0 WIFI网络工作任务函数

cpp 复制代码
void WifiNetworkTask(void)
{
	WifiCommState_t commState;
	static WifiWorkState_t workState = CHECK_WIFI_MODULE;
	static uint8_t hwresetCnt = 0;
	switch (workState)
	{
		case CHECK_WIFI_MODULE:
			commState = CheckWifiModuleWork();
			if (commState == WIFI_COMM_OK)
			{
				workState = CHECK_WIFI_CONNECT;
			}
			else if (commState == WIFI_COMM_FAIL)
			{
				workState = HWRESET_WIFI_MODULE;
			}
			break;
		case CHECK_WIFI_CONNECT:
			commState = CheckWifiConnect();
			if (commState == WIFI_COMM_OK)
			{
				workState = CONNECT_MQTT_SERVER;
			}
			else if (commState == WIFI_COMM_FAIL)
			{
				workState = CHECK_WIFI_MODULE;
			}
			break;		
		case CONNECT_MQTT_SERVER:
			break;
		case COMM_MQTT_SERVER:
			break;
		case HWRESET_WIFI_MODULE:
			if (hwresetCnt < 1)                 // 如果AT命令不通,硬件复位1次
			{
				HwresetWifiModule();
				DelayNms(1000);
				workState = CHECK_WIFI_MODULE;
				hwresetCnt++;
			}
			else
			{
				printf("wifi module error!\n");
				workState = WIWI_MODULE_ERROR;  // 如果硬件复位1次,AT命令还是不通,就不再执行WIFI任务的业务逻辑,直接退出,避免影响其他任务
			}
			break;
		default:
			break;
	}
}

10.0 网络连接成功

相关推荐
卷卷的小趴菜学编程41 分钟前
c++之List容器的模拟实现
服务器·c语言·开发语言·数据结构·c++·算法·list
Anna_Tong41 分钟前
物联网边缘(Beta)离全面落地还有多远?
物联网·阿里云·边缘计算·腾讯云·智能制造
雪兽软件43 分钟前
零售业革命:改变行业的顶级物联网用例
物联网
XLYcmy44 分钟前
三篇物联网漏洞挖掘综述
论文阅读·物联网·网络安全·静态分析·漏洞挖掘·动态分析·固件
神一样的老师1 小时前
基于马尔可夫链和多属性决策方法的物联网生态系统信任评分预测与管理
物联网
电工小王(全国可飞)1 小时前
STM32F407 内部参考电压校准实现 HAL库
stm32·单片机·嵌入式硬件
gyeolhada1 小时前
计算机组成原理(计算机系统3)--实验七:新增指令实验
单片机·嵌入式硬件
嵌入式小强工作室2 小时前
STM32更新程序OTA
stm32·单片机·嵌入式硬件
DARLING Zero two♡4 小时前
【初阶数据结构】逆流的回环链桥:双链表
c语言·数据结构·c++·链表·双链表
9毫米的幻想4 小时前
【Linux系统】—— 编译器 gcc/g++ 的使用
linux·运维·服务器·c语言·c++