大数据计算-SQL优化手段(CBO)-以Flink为例

文章目录

背景

大数据计算中,SQL生成的执行计划第一轮会经过固定规则的优化,第二轮会根据原计划,生成多条结合成本的的执行计划,根据cost 进行排序,选出最优的执行计划。

理论知识

原始计划如左图,

有三种执行方案

方案1,scan表1,scan表2,然后hash ,再join

方案2,scan表1,scan表2,然后broadcast 表1 ,再join

方案2,scan表1,scan表2,然后broadcast 表2 ,再join

从成本(只看行数)来看,如果表aa_user 行数远小于bb_order ,那 方案2得出来的成本就是最优的。

下面是示意图

示例

aa_user 的表行数远小于bb_order

bash 复制代码
 public static void main(String[] args) {
        EnvironmentSettings settings = EnvironmentSettings.inBatchMode();

        TableEnvironment tableEnvironment = TableEnvironment.create(settings);

        Schema schema = Schema.newBuilder().column("count", DataTypes.INT()).column("word", DataTypes.STRING()).build();

        Schema schema1 = Schema.newBuilder().column("id", DataTypes.INT()).column("name", DataTypes.STRING()).build();


        tableEnvironment.createTemporaryTable("aa_user", TableDescriptor.forConnector("filesystem").schema(schema)
                .option("path","/Users/xx/IdeaProjects/flink-demo/data/order.csv").format("csv").build());


        tableEnvironment.createTemporaryTable("bb_order", TableDescriptor.forConnector("filesystem").schema(schema1)
                .option("path","/Users/xx/IdeaProjects/flink-demo/data/user.csv").format("csv").build());



      //  tableEnvironment.executeSql("select * from aa_user").print();

        //tableEnvironment.executeSql("select * from aa_user inner join bb_order on `aa_user`.`count`=`bb_order`.`id`").print();


    String cost=    tableEnvironment.explainSql("select * from aa_user inner join bb_order on `aa_user`.`count`=`bb_order`.`id`", ExplainDetail.ESTIMATED_COST);
        System.out.println(cost);

    }

结果展示

bash 复制代码
== Abstract Syntax Tree ==
LogicalProject(count=[$0], word=[$1], id=[$2], name=[$3])
+- LogicalJoin(condition=[=($0, $2)], joinType=[inner])
   :- LogicalTableScan(table=[[default_catalog, default_database, aa_user]])
   +- LogicalTableScan(table=[[default_catalog, default_database, bb_order]])

== Optimized Physical Plan ==
NestedLoopJoin(joinType=[InnerJoin], where=[=(count, id)], select=[count, word, id, name], build=[left]): rowcount = 87.6, cumulative cost = {673.6 rows, 1484.0 cpu, 9344.0 io, 32.0 network, 40.0 memory}
:- Exchange(distribution=[broadcast]): rowcount = 2.0, cumulative cost = {4.0 rows, 320.0 cpu, 32.0 io, 32.0 network, 0.0 memory}
:  +- TableSourceScan(table=[[default_catalog, default_database, aa_user]], fields=[count, word]): rowcount = 2.0, cumulative cost = {2.0 rows, 0.0 cpu, 32.0 io, 0.0 network, 0.0 memory}
+- TableSourceScan(table=[[default_catalog, default_database, bb_order]], fields=[id, name]): rowcount = 582.0, cumulative cost = {582.0 rows, 0.0 cpu, 9312.0 io, 0.0 network, 0.0 memory}

== Optimized Execution Plan ==
MultipleInput(readOrder=[0,1], members=[\nNestedLoopJoin(joinType=[InnerJoin], where=[(count = id)], select=[count, word, id, name], build=[left])\n:- [#1] Exchange(distribution=[broadcast])\n+- [#2] TableSourceScan(table=[[default_catalog, default_database, bb_order]], fields=[id, name])\n])
:- Exchange(distribution=[broadcast])
:  +- TableSourceScan(table=[[default_catalog, default_database, aa_user]], fields=[count, word])
+- TableSourceScan(table=[[default_catalog, default_database, bb_order]], fields=[id, name])
结果解释

NestedLoopJoin:Flink 选择了嵌套循环连接(Nested Loop Join)作为执行 JOIN 的策略,使用 count = id 作为连接条件。

Exchange(distribution=[broadcast]):表示将 aa_user 表的数据广播分发,以减少数据移动的开销,rowcount = 2.0 表示预估的行数。

TableSourceScan:直接扫描表 aa_user 和 bb_order,并读取相应的字段。表 aa_user 预估有 2 行,表 bb_order 预估有 582 行

相关推荐
现在,此刻1 小时前
flink学习与如何在springboot项目中使用flink
spring boot·学习·flink
隐语SecretFlow4 小时前
【隐语SecretFlow】由蚂蚁集团牵头制定的“隐私保护计算安全分级”IEEE国际标准已正式发布!
大数据·网络·安全
微三云、小叶7 小时前
裂变速度提升300%!279模式如何盘活一个私域商城
大数据·软件开发·商业模式·小程序商城·本地生活·商业思维
小至尖尖7 小时前
fastdbchkrep项目(数据库自动生成巡检报告) open source
sql·sql优化
还是大剑师兰特9 小时前
Hadoop面试题及详细答案 110题 (106-110)-- Hadoop高级与实战
大数据·hadoop·分布式
努力成为一个程序猿.9 小时前
【问题排查】hadoop-shaded-guava依赖问题
大数据·hadoop·spark
达芬奇科普10 小时前
俄罗斯全面禁止汽油出口对俄、欧、中能源市场的多维影响分析
大数据·人工智能
·云扬·11 小时前
MySQL主从数据一致性校验工具:pt-table-checksum 详解
数据库·sql·mysql
那我掉的头发算什么11 小时前
【数据库】事务
数据库·sql·mysql·github·数据库开发
wudl556612 小时前
Flink SQL连接Kafka及数据去重操作
sql·flink·kafka