大数据计算-SQL优化手段(CBO)-以Flink为例

文章目录

背景

大数据计算中,SQL生成的执行计划第一轮会经过固定规则的优化,第二轮会根据原计划,生成多条结合成本的的执行计划,根据cost 进行排序,选出最优的执行计划。

理论知识

原始计划如左图,

有三种执行方案

方案1,scan表1,scan表2,然后hash ,再join

方案2,scan表1,scan表2,然后broadcast 表1 ,再join

方案2,scan表1,scan表2,然后broadcast 表2 ,再join

从成本(只看行数)来看,如果表aa_user 行数远小于bb_order ,那 方案2得出来的成本就是最优的。

下面是示意图

示例

aa_user 的表行数远小于bb_order

bash 复制代码
 public static void main(String[] args) {
        EnvironmentSettings settings = EnvironmentSettings.inBatchMode();

        TableEnvironment tableEnvironment = TableEnvironment.create(settings);

        Schema schema = Schema.newBuilder().column("count", DataTypes.INT()).column("word", DataTypes.STRING()).build();

        Schema schema1 = Schema.newBuilder().column("id", DataTypes.INT()).column("name", DataTypes.STRING()).build();


        tableEnvironment.createTemporaryTable("aa_user", TableDescriptor.forConnector("filesystem").schema(schema)
                .option("path","/Users/xx/IdeaProjects/flink-demo/data/order.csv").format("csv").build());


        tableEnvironment.createTemporaryTable("bb_order", TableDescriptor.forConnector("filesystem").schema(schema1)
                .option("path","/Users/xx/IdeaProjects/flink-demo/data/user.csv").format("csv").build());



      //  tableEnvironment.executeSql("select * from aa_user").print();

        //tableEnvironment.executeSql("select * from aa_user inner join bb_order on `aa_user`.`count`=`bb_order`.`id`").print();


    String cost=    tableEnvironment.explainSql("select * from aa_user inner join bb_order on `aa_user`.`count`=`bb_order`.`id`", ExplainDetail.ESTIMATED_COST);
        System.out.println(cost);

    }

结果展示

bash 复制代码
== Abstract Syntax Tree ==
LogicalProject(count=[$0], word=[$1], id=[$2], name=[$3])
+- LogicalJoin(condition=[=($0, $2)], joinType=[inner])
   :- LogicalTableScan(table=[[default_catalog, default_database, aa_user]])
   +- LogicalTableScan(table=[[default_catalog, default_database, bb_order]])

== Optimized Physical Plan ==
NestedLoopJoin(joinType=[InnerJoin], where=[=(count, id)], select=[count, word, id, name], build=[left]): rowcount = 87.6, cumulative cost = {673.6 rows, 1484.0 cpu, 9344.0 io, 32.0 network, 40.0 memory}
:- Exchange(distribution=[broadcast]): rowcount = 2.0, cumulative cost = {4.0 rows, 320.0 cpu, 32.0 io, 32.0 network, 0.0 memory}
:  +- TableSourceScan(table=[[default_catalog, default_database, aa_user]], fields=[count, word]): rowcount = 2.0, cumulative cost = {2.0 rows, 0.0 cpu, 32.0 io, 0.0 network, 0.0 memory}
+- TableSourceScan(table=[[default_catalog, default_database, bb_order]], fields=[id, name]): rowcount = 582.0, cumulative cost = {582.0 rows, 0.0 cpu, 9312.0 io, 0.0 network, 0.0 memory}

== Optimized Execution Plan ==
MultipleInput(readOrder=[0,1], members=[\nNestedLoopJoin(joinType=[InnerJoin], where=[(count = id)], select=[count, word, id, name], build=[left])\n:- [#1] Exchange(distribution=[broadcast])\n+- [#2] TableSourceScan(table=[[default_catalog, default_database, bb_order]], fields=[id, name])\n])
:- Exchange(distribution=[broadcast])
:  +- TableSourceScan(table=[[default_catalog, default_database, aa_user]], fields=[count, word])
+- TableSourceScan(table=[[default_catalog, default_database, bb_order]], fields=[id, name])
结果解释

NestedLoopJoin:Flink 选择了嵌套循环连接(Nested Loop Join)作为执行 JOIN 的策略,使用 count = id 作为连接条件。

Exchange(distribution=[broadcast]):表示将 aa_user 表的数据广播分发,以减少数据移动的开销,rowcount = 2.0 表示预估的行数。

TableSourceScan:直接扫描表 aa_user 和 bb_order,并读取相应的字段。表 aa_user 预估有 2 行,表 bb_order 预估有 582 行

相关推荐
专注API从业者8 分钟前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
码出未来8571 小时前
浅谈DDL、DSL、DCL、DML、DQL
sql
AI 嗯啦1 小时前
SQL详细语法教程(四)约束和多表查询
数据库·人工智能·sql
阿里云大数据AI技术1 小时前
【跨国数仓迁移最佳实践6】MaxCompute SQL语法及函数功能增强,10万条SQL转写顺利迁移
python·sql
淡酒交魂2 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
mask哥2 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
TDengine (老段)2 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
livemetee2 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink
zhang98800004 小时前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
老蒋新思维4 小时前
存量竞争下的破局之道:品牌与IP的双引擎策略|创客匠人
大数据·网络·知识付费·创客匠人·知识变现